A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effect of formulation conditions on hypromellose performance properties in films used for capsules and tablet coatings. | LitMetric

Effect of formulation conditions on hypromellose performance properties in films used for capsules and tablet coatings.

AAPS PharmSciTech

Liquid Formulations and Actives Delivery, The Dow Chemical Company, 1712 Bldg., Midland, Michigan, USA.

Published: December 2012

This study investigated the effects of polymer dispersion and hydration conditions on hypromellose (HPMC) film properties, such as strength, oxygen permeability, water vapor transmission, clarity, and haze. The focus of the study was to build a better understanding of the impact that changes to HPMC dispersion and hydration conditions have on performance properties of the resulting films. This understanding could potentially lead to more flexible formulation guidelines for formulators. Films of HPMC 2906 (USP) were produced from aqueous solutions prepared using various formulation conditions. Results showed that tensile properties and oxygen permeability were not significantly affected by the variables used. The differences observed in water vapor transmission are unlikely to affect practical application of the material. However, the differences observed in clarity and haze at 50°C hydration temperature could affect the appearance of a capsule or coated tablet. Several methods were used to determine whether loss of optical properties was due to surface phenomena or bulk defects within a film. Results indicated that the cloudy appearance was primarily due to surface roughness. Based on this information, there is some flexibility in formulation conditions; however, hydration temperatures greater than 25°C are not recommended.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3513457PMC
http://dx.doi.org/10.1208/s12249-012-9841-0DOI Listing

Publication Analysis

Top Keywords

formulation conditions
12
conditions hypromellose
8
performance properties
8
properties films
8
dispersion hydration
8
hydration conditions
8
oxygen permeability
8
water vapor
8
vapor transmission
8
clarity haze
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!