We discuss a method for producing automatic 3D connections at right places between substrates in front of one another. The idea is based on the materialization of disclination lines working as templates. The lines are first created in the nematic liquid crystal (5CB) at the very place where microwires have to be synthesized. Due to their anchoring properties, colloids dispersed into the nematic phase produce orientational distortions around them. These distortions, which may be considered as due to topological charges, result in a nematic force, able to attract the colloids towards the disclinations. Ultimately, the particles get trapped onto them, forming micro- or nano-necklaces. Before being introduced in the nematic phase, the colloids are covered with an adhering and conducting polypyrrole film directly synthesized at the surface of the particles (heterogeneous polymerization). In this manner, the particles become conductive so that we may finally perform an electropolymerization of pyrrole monomers solved in 5CB, and definitely stick the whole necklace. The electric connection thus synthesized is analyzed by AFM, and its strength is checked by means of hydrodynamic tests. This wiring method could allow Moore's law to overcome the limitations that arise when down-sizing the electronic circuits to nanometer scale.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1140/epje/i2012-12082-1 | DOI Listing |
Nat Commun
January 2025
Department of Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China.
Materials with full and fractional skyrmions are important for fundamental studies and can be applied as information carriers for applications in spintronics or skyrmionics. However, creation, direct optical observation and manipulation of different skyrmion textures remain challenging. Besides, how the transformation of skyrmion textures directs the dynamics of colloids is not well understood.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Flatiron Institute, Center for Computational Quantum Physics, New York, New York 10010, USA.
The two-dimensional electron gas (2DEG) is a fundamental model, which is drawing increasing interest because of recent advances in experimental and theoretical studies of 2D materials. Current understanding of the ground state of the 2DEG relies on quantum Monte Carlo calculations, based on variational comparisons of different Ansätze for different phases. We use a single variational ansatz, a general backflow-type wave function using a message-passing neural quantum state architecture, for a unified description across the entire density range.
View Article and Find Full Text PDFSoft Matter
January 2025
Department of Physics, Kyoto University, Kyoto 606-8502, Japan.
This study explores the influence of charge distribution and molecular shape on the stability of ferroelectric nematic liquid crystalline phases through atomistic simulations of DIO molecules. We demonstrate the role of dipole-dipole interactions and molecular shape in achieving polar ordering by simulating charged and chargeless topologies, and analysing positional and orientational pair-distribution functions. The charged DIO molecules exhibit head-to-tail and side-by-side parallel alignments conducive to long-range polar order, whereas the chargeless molecules show no polar ordering.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K.
Ferroelectric nematic (N) liquid crystals combine liquid-like fluidity and orientational order of conventional nematics with macroscopic electric polarization comparable in magnitude to solid-state ferroelectric materials. Here, we present a systematic study of twenty-seven homologous materials with various fluorination patterns, giving new insight into the molecular origins of spontaneous polar ordering in fluid ferroelectric nematics. Beyond our initial expectations, we find the highest stability of the N phase to be in materials with specific fluorination patterns rather than the maximal fluorination, which might be expected based on simple models.
View Article and Find Full Text PDFSoft Matter
January 2025
Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
We report an experimental study on how topological defects induced by cylindrical air inclusions in the ferroelectric nematic liquid crystal RM734 are influenced by ionic doping, including an ionic surfactant and ionic polymer. Our results show that subtle differences in molecular structure can lead to distinct surface alignments and topological defects. The ionic surfactant induces a planar alignment, with two -1/2 line defects adhering to the cylindrical bubble surface.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!