Lab Chip
Department of Nanoscience and Engineering, Myongji University, Yongin, Gyeonggi, Korea.
Published: November 2012
A fully integrated microchip for performing cell lysis, polymerase chain reaction (PCR) and quantitative analysis of DNA amplicons in a single step is described herein. The chip was built on glass substrate using an indium-tin-oxide (ITO) microheater and PDMS engraved microchannels, which integrated an electrochemical cell lysis zone, a continuous flow PCR module and capillary electrophoresis amperometric detection (CE-AD) system. The total length of the microchannel was 4625 mm for performing 25 cycles of flow-through PCR and was laid on a handheld form factor of 96 × 96 mm(2) area. The key to the fabrication of such a device lies in the use of a single medium to carry out different kinds of biochemical reactions and hence, a reagentless electrochemical cell lysis protocol was integrated on the microchip which was capable of lysing most cell types, including difficult to lyse gram positive bacteria. The lysate contained genomic DNA from a sample which was proven to be suitable for PCR reactions. Genetic analysis was successfully performed on the microchip with purified lambda phage genomic DNA and various cell types, including non-tumorigenic MCF-10A and tumorigenic MCF-7 human cell lines, gram negative bacteria Escherichia coli O157:H7, and gram positive bacteria Bacillus subtilis, at an optimized flow rate of 5 μl min(-1). For the detection of amplicon DNA, a CE-AD system was used, with semisolid alkaline agarose within the capillary microchannel to minimize interference from cell debris and for efficient resolution of DNA fragments. High signal to noise ratio during amperometric detection and the use of online FFT filtering protocol enhanced the limit of detection of DNA amplicons. Therefore, with a combination of portability, cost-effectiveness and performance, the proposed integrated PCR microchip can be used for one step genetic analysis of most of the cell types and will enable more accessible healthcare.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c2lc40727b | DOI Listing |
J Med Virol
January 2025
Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz-Fiocruz, Rio de Janeiro, Brazil.
An unprecedented global outbreak caused by the monkeypox virus (MPXV) prompted the World Health Organization to declare a public health emergency of international concern on July 23, 2022. Therapeutics and vaccines for MPXV are not widely available, necessitating further studies, particularly in drug repurposing area. To this end, the standardization of in vitro infection systems is essential.
View Article and Find Full Text PDFAm J Transl Res
December 2024
Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University Chongqing 400042, China.
Objective: To investigate the effects of Astragalus polysaccharide (APS) on skeletal muscle structure and function in D-galactose (D-gal)-induced C57BL/6J mice.
Methods: Eighteen male C57BL/6J mice of specific pathogen-free (SPF) grade, aged 8 weeks, were selected and divided into three groups: a control group (0.9% saline gavage for 16 weeks), a D-gal group (subcutaneous injection of 200 mg/kg D-galactose in the upper neck region, once daily for 8 weeks), and a D-gal + APS group (subcutaneous injection of 200 mg/kg D-galactose, once daily for 8 weeks, with concurrent administration of 100 mg/kg APS by gavage for 8 weeks).
Microb Biotechnol
January 2025
Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA.
The increasing threat of antibiotic resistance underscores the urgent need for innovative strategies to combat infectious diseases, including the development of antivirulants. Microbial pathogens rely on their virulence factors to initiate and sustain infections. Antivirulants are small molecules designed to target virulence factors, thereby attenuating the virulence of infectious microbes.
View Article and Find Full Text PDFAnn Hematol
January 2025
Department of Clinical Pathology-Hematology and AinShams Medical Research Institute (MASRI), Faculty of Medicine, Ain Shams University, Cairo, 11566, Egypt.
Refractory Diffuse Large B-cell Lymphoma (DLBCL) presents a major therapeutic challenge due to its resistance to standard treatments. Engineered T-cells, especially Chimeric Antigen Receptor (CAR) T-cells, have shown promise in overcoming drug resistance. This study investigates the effectiveness of WEE1-engineered T-cells in targeting and eliminating refractory DLBCL in vitro.
View Article and Find Full Text PDFClin Proteomics
January 2025
Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, UAE.
Background: Medwakh smoking has radically expanded among youth in the Middle East and around the world. The rising popularity of medwakh/dokha usage is linked to the onset of several chronic illnesses including cardiovascular diseases and cancers. Medwakh smoking is reported to increase the risk of inflammation in the lower respiratory tract owing to oxidative burden.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.