TMEM166 is a novel programmed cell death-related molecule. In this report, we constructed a recombinant adenovirus 5-TMEM166 vector (Ad5-TMEM166) and evaluated its expression and anti-tumor activities in vitro and in vivo. Cell viability analysis revealed that the adenovirus-mediated increase of TMEM166 inhibited tumor cell growth in a dose- and time-dependent manner. This inhibitory effect was mediated by both autophagy (via inhibition of mTOR and activation of p70S6K) and apoptosis (via caspase-3 activation), both of which contributed to cell death and suppression of tumorigenicity. Our data indicated that Ad5-TMEM166 may be a novel gene therapy candidate for cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.canlet.2012.08.032DOI Listing

Publication Analysis

Top Keywords

cell growth
8
vitro vivo
8
cell
5
adenovirus vector-mediated
4
vector-mediated expression
4
expression tmem166
4
tmem166 inhibits
4
inhibits human
4
human cancer
4
cancer cell
4

Similar Publications

Breast cancers of the IntClust-2 type, characterized by amplification of a small portion of chromosome 11, have a median survival of only five years. Several cancer-relevant genes occupy this portion of chromosome 11, and it is thought that overexpression of a combination of driver genes in this region is responsible for the poor outcome of women in this group. In this study we used a gene editing method to knock out, one by one, each of 198 genes that are located within the amplified region of chromosome 11 and determined how much each of these genes contributed to the survival of breast cancer cells.

View Article and Find Full Text PDF

Non-canonical Wnt signaling pathway activated NFATC3 promotes GDF15 expression in MASH: prospective analyses of UK biobank proteomic data.

Hepatol Int

January 2025

National Clinical Research Center for Digestive Disease, State Key Lab of Digestive Health, Beijing Friendship Hospital, Capital Medical University, Beijing, China.

Background: Our previous research demonstrated that growth differentiation factor 15 (GDF15) exhibited superior predictive capability for metabolic dysfunction-associated steatohepatitis (MASH) development with an AUC of 0.86 at 10 years before disease diagnosis. However, the specific pathways and molecular mechanisms associated with GDF15 expression during MASH development remain to be fully investigated in humans.

View Article and Find Full Text PDF

Saponins enhance the stability and cost-efficiency of human embryonic stem cell culture.

Cell Regen

January 2025

Department of Neurology, Zhongshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China.

The cultivation and differentiation of human embryonic stem cells (hESCs) into organoids are crucial for advancing of new drug development and personalized cell therapies. Despite establishing of chemically defined hESC culture media over the past decade, these media's reliance on growth factors, which are costly and prone to degradation, poses a challenge for sustained and stable cell culture. Here, we introduce an hESC culture system(E6Bs) that facilitates the long-term, genetically stable expansion of hESCs, enabling cells to consistently sustain high levels of pluripotency markers, including NANOG, SOX2, TRA-1-60, and SSEA4, across extended periods.

View Article and Find Full Text PDF

We aimed to investigate the wound-healing, antioxidant, and anti-inflammatory effects of pterostilbene (PTS) on human gingival fibroblasts (GF). Different concentrations of PTS were applied to GFs and cell viability was evaluated by MTT assay. GFs were stimulated by lipopolysaccharide (LPS) and the study groups were determined as LPS, LPS + 1 μM PTS, LPS + 10 μM PTS, and control.

View Article and Find Full Text PDF

Sexual spores in mushrooms: bioactive compounds, factors and molecular mechanisms of spore formation.

Arch Microbiol

January 2025

Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China.

Throughout the life cycle of mushrooms, countless spores are released from the fruiting bodies. The spores have significant implications in the food and medicine industries due to pharmacological effects attributed to their bioactive ingredients. Moreover, high concentration of mushroom spores can induce extrinsic allergic reactions in mushroom cultivation workers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!