Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Inositol 1,4,5-trisphosphate (InsP(3)R)-mediated Ca(2+) signaling is a major pathway regulating multiple cellular functions in excitable and non-excitable cells. Although InsP(3)-mediated Ca(2+) signaling has been extensively described, its influence on ventricular myocardium activity has not been addressed in contracting hearts at the whole-organ level. In this work, InsP(3)-sensitive intracellular Ca(2+) signals were studied in intact hearts using laser scanning confocal microscopy and pulsed local-field fluorescence microscopy. Intracellular [InsP(3)] was rapidly increased by UV flash photolysis of membrane-permeant caged InsP(3). Our results indicate that the basal [Ca(2+)] increased after the flash photolysis of caged InsP(3) without affecting the action potential (AP)-induced Ca(2+) transients. The amplitude of the basal [Ca(2+)] elevation depended on the intracellular [InsP(3)] reached after the UV flash. Pretreatment with ryanodine failed to abolish the InsP(3)-induced Ca(2+) release (IICR), indicating that this response was not mediated by ryanodine receptors (RyR). Thapsigargin prevented Ca(2+) release from both RyR- and InsP(3)R-containing Ca(2+) stores, suggesting that these pools have similar Ca(2+) reuptake mechanisms. These results were reproduced in acutely isolated cells where photorelease of InsP(3) was able to induce changes in endothelial cells but not in AP-induced transients from cardiomyocytes. Taken together, these results suggest that IICR does not directly regulate cardiac excitation-contraction coupling. To our knowledge, this is the first demonstration of IICR in intact hearts. Consequently, our work provides a reference framework of the spatiotemporal attributes of the IICR under physiological conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3496050 | PMC |
http://dx.doi.org/10.1016/j.yjmcc.2012.08.019 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!