Animals have developed adaptive strategies to survive tough situations such as food shortage. However, the underlying molecular mechanism is not fully understood. Here, we provided evidence that the regulatory peptide prokineticin 2 (PK2) played an important role in such an adaptation. The PK2 expression was rapidly induced in the hypothalamic paraventricular nucleus (PVN) after fasting, which can be mimicked by 2-deoxy-D-glucose (2-DG) injection. The fasting-induced arousal was absent in the PK2-deficient (PK2(-/-)) mice. Furthermore, PK2(-/-) mice showed less energy expenditure and body weight loss than wild-type (WT) controls upon fasting. As a result, PK2(-/-) mice entered torpor after fasting. Supply of limited food (equal to 5% of body weight) daily during fasting rescued the body weight loss and hypothermal phenotype in WT mice, but not in PK2(-/-) mice. Our study thus demonstrated PK2 as a regulator in the thermoregulation and energy expenditure.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.regpep.2012.08.003DOI Listing

Publication Analysis

Top Keywords

pk2-/- mice
16
energy expenditure
12
body weight
12
thermoregulation energy
8
mice pk2-/-
8
weight loss
8
mice
5
prokineticin involved
4
involved thermoregulation
4
expenditure animals
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!