Foxp3(+) regulatory T (Treg) cells limit inflammatory responses and maintain immune homeostasis. Although comprised of several phenotypically and functionally distinct subsets, the differentiation of specialized Treg cell populations within the periphery is poorly characterized. We demonstrate that the development of T-bet(+) Treg cells that potently inhibit T helper 1 (Th1) cell responses was dependent on the transcription factor STAT1 and occurred directly in response to interferon-γ produced by effector T cells. Additionally, delayed induction of the IL-12Rβ2 receptor component after STAT1 activation helped ensure that Treg cells do not readily complete STAT4-dependent Th1 cell development and lose their ability to suppress effector T cell proliferation. Thus, we define a pathway of abortive Th1 cell development that results in the specialization of peripheral Treg cells and demonstrate that impaired expression of a single cytokine receptor helps maintain Treg cell-suppressive function in the context of inflammatory Th1 cell responses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3501343PMC
http://dx.doi.org/10.1016/j.immuni.2012.05.031DOI Listing

Publication Analysis

Top Keywords

treg cells
20
th1 cell
20
t-bet+ treg
8
abortive th1
8
impaired expression
8
cell responses
8
cell development
8
cell
6
treg
6
cells
5

Similar Publications

CD4FOXP3Exon2 regulatory T cell frequency predicts breast cancer prognosis and survival.

Sci Adv

January 2025

Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", IEOS-CNR, Napoli, Italy.

CD4FOXP3 regulatory T cells (T) suppress immune responses to tumors, and their accumulation in the tumor microenvironment (TME) correlates with poor clinical outcome in several cancers, including breast cancer (BC). However, the properties of intratumoral T remain largely unknown. Here, we found that a functionally distinct subpopulation of T, expressing the FOXP3 Exon2 splicing variants, is prominent in patients with hormone receptor-positive BC with poor prognosis.

View Article and Find Full Text PDF

Typical epidermodysplasia verruciformis (EV) is a rare, autosomal recessive disorder characterized by an unusual susceptibility to infection with specific skin-trophic types of human papillomavirus, principally betapapillomaviruses, and a propensity for developing malignant skin tumors in sun exposed regions. Its etiology reflects biallelic loss-of-function mutations in TMC6 (EVER1), TMC8 (EVER2) or CIB1. A TMC6-TMC8-CIB1 protein complex in the endoplasmic reticulum is hypothesized to be a restriction factor in keratinocytes for βHPV infection.

View Article and Find Full Text PDF

Objective: Abnormal levels and imbalances of T cell subsets are common in recurrent spontaneous abortion (RSA) patients, but most studies have small sample sizes, and comprehensive evaluations are lacking. Therefore, this meta-analysis aimed to comprehensively investigate T cell subsets and their ratios in RSA patients.

Methods: Four databases (PubMed, EMBASE, Web of Science, and Cochrane Library databases) were searched until 10 January 2024.

View Article and Find Full Text PDF

Engineered extracellular vesicles as "supply vehicles" to alleviate type 1 diabetes.

Extracell Vesicles Circ Nucl Acids

November 2024

The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan 523059, Guangdong, China.

Recent findings have indicated that the deficiency of inhibitory programmed cell death ligand 1 (PD-L1) and galectin-9 (Gal-9) in pancreatic β-cells is associated with the progression of type 1 diabetes (T1D). This suggests that exogenous PD-L1 and Gal-9 may have promising potential as therapeutics for the treatment of T1D. In light of these reports, a recent work investigated the potential of artificial extracellular vesicles (aEVs) with the presentation of PD-L1 and Gal-9 ligands (PD-L1-Gal-9 aEVs) as a treatment for T1D, with the findings published in .

View Article and Find Full Text PDF

The Immune System: An Arrow to the Heart and Principles of Cardioimmunology as an Emerging Branch of Medicine.

Curr Vasc Pharmacol

January 2025

Unit of Cardiovascular Diseases, Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Bari, Italy.

Background: Cardioimmunology is an emerging branch of medicine whose development has been facilitated by more sophisticated diagnostic procedures. Recent studies have mainly focused on the immune response during myocardial infarction (MI), and there is evidence that both resident and external immune cells participate in acute inflammatory disease, as well as tissue remodeling. Cardiac Innate Immune Cells: Following MI, macrophages, dendritic cells (DCs) and mast cells (MCs) are the main players in the heart.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!