Connexin 43 (Cx43) is a phosphoprotein expressed in a wide variety of cells. Cx43 and adenosine-triphosphate-sensitive K(+)channels [K(+)(ATP)] are part of same signaling pathway that regulates cell survival during stress and ischemia preconditioning. Molecular mechanism for their coordinated role in ischemia/hypoxia preconditioning is not well known. Using pull down, co-immunoprecipitation assays and co-localization studies we provide evidence, for the first time that Kir6.1, a K(+)(ATP) channel protein component, can interact with Cx43. Further we show that the interaction was phospho-specific such that Cx43 phosphorylated at serine 262 (S262) interacted with Kir6.1 in preference to the unphosphorylated form of Cx43. Introduction of phospho-deficient mutation at serine 262 (S262A) in Cx43 completely abolished the interaction. Our data provide an interesting lead about a possible partnership between Cx43 and Kir6.1, which will help in better understanding their role in ischemia/hypoxia preconditioning.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.yexcr.2012.08.004 | DOI Listing |
Int J Mol Sci
January 2025
Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Taoyuan Branch, Taoyuan 33304, Taiwan.
The electrophysiological mechanisms underlying melatonin's actions and the electrophysiological consequences of superimposed therapeutic hypothermia (TH) in preventing cardiac ischemia-reperfusion (IR) injury-induced arrhythmias remain largely unknown. This study aimed to unveil these issues using acute IR-injured hearts. Rabbits were divided into heart failure (HF), HF+melatonin, control, and control+melatonin groups.
View Article and Find Full Text PDFBone Res
January 2025
Department of Endodontology, School of Dental Medicine, University of Connecticut Health, Farmington, CT, USA.
Craniometaphyseal dysplasia (CMD), a rare craniotubular disorder, occurs in an autosomal dominant (AD) or autosomal recessive (AR) form. CMD is characterized by hyperostosis of craniofacial bones and metaphyseal flaring of long bones. Many patients with CMD suffer from neurological symptoms.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Department of Translational Physiology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium.
Gap junctions (GJs) play a pivotal role in intercellular communication between eukaryotic cells, including transfer of biomolecules that contribute to the innate and adaptive immune response. However, if and how viruses affect gap junction intercellular communication (GJIC) remains largely unexplored. Here, we describe how the alphaherpesvirus pseudorabies virus (PRV) triggers ERK1/2-mediated phosphorylation of the main gap junction component connexin 43 (Cx43) and closure of GJIC, which depends on the viral protein pUL46.
View Article and Find Full Text PDFJ Stroke Cerebrovasc Dis
January 2025
Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, PR China; Institute of Neuroscience, Nanchang University, Nanchang 330031, Jiangxi Province, PR China; Jiangxi Provincial Clinical Medical Research Center for Neurological Disorders, Nanchang 330031, Jiangxi Province, PR China. Electronic address:
Adv Healthc Mater
January 2025
Department of Biochemistry and Molecular and Cellular Biology, School of Medicine, Georgetown University, Washington, DC, 20057, USA.
Glucocorticoids (GCs) are standard-of-care treatments for inflammatory and immune disorders, and their long-term use increases the risk of osteoporosis. Although GCs decrease bone functionality, their role in bone microvasculature is incompletely understood. Herein, the study investigates the mechanisms of bone microvascular barrier function via osteoblast-endothelial interactions in response to GCs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!