The pathophysiology of oxidative hemolytic anemia is closely associated with hemoglobin (Hb) stability; however, the mechanism of how Hb maintains its stability under oxidative stress conditions of red blood cells (RBCs) carrying high levels of oxygen is unknown. Here, we investigated the potential role of peroxiredoxin II (Prx II) in preventing Hb aggregation induced by reactive oxygen species (ROS) using Prx II knockout mice and RBCs of patients with hemolytic anemia. Upon oxidative stress, ROS and Heinz body formation were significantly increased in Prx II knockout RBCs compared to wild-type (WT), which ultimately accelerated the accumulation of hemosiderin and heme-oxygenase 1 in the Prx II knock-out livers. In addition, ROS-dependent Hb aggregation was significantly increased in Prx II knockout RBCs. Interestingly, Prx II interacted with Hb in mouse RBCs, and their interaction, in particular, was severely impaired in RBCs of patients with thalassemia (THAL) and sickle cell anemia (SCA). Hb was bound to the decameric structure of Prx II, by which Hb was protected from oxidative stress. These findings suggest that Prx II plays an important role in preventing hemolytic anemia from oxidative stress by binding to Hb as a decameric structure to stabilize it.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2012.08.113 | DOI Listing |
Cell Commun Signal
January 2025
Institute of Animal Reproduction and Food Research, Olsztyn, Poland.
Cryopreservation of bull sperm, crucial for breeding and assisted reproduction, often reduces sperm quality due to oxidative stress. This study examines how oxidative stress during cryopreservation affects peroxiredoxin 5 (PRDX5) and peroxiredoxin 6 (PRDX6) proteins, leading to their translocation and oligomerization in bull sperm. Increased reactive oxygen species (ROS) and nitric oxide (NO) levels were linked to reduced mitochondrial potential, higher DNA fragmentation, and increased membrane fluidity, prompting PRDX5 to move intracellularly and PRDX6 to the cell membrane.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Orthopedics, Affiliated Hospital of Nanjing University of Chinese Medicine / Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, 210029, China.
Background: Skeletal muscle injury caused by excessive exercise is one of the most commonly seen clinical diseases. It is indispensable to explore drugs for treating and relieving skeletal muscle injury. Gallic acid (GA) is a polyphenolic extract that has anti-inflammatory and antioxidant biological activities.
View Article and Find Full Text PDFBMC Endocr Disord
January 2025
School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, 230032, China.
Background: As the prevalence of metabolic syndrome (MetS) rises among older adults, the associated risks of cardiovascular diseases and diabetes significantly increase, and it is closely linked to various metabolic processes in the body. Dysregulation of tryptophan (TRP) metabolism, particularly alterations in the kynurenine (KYN) and serotonin pathways, has been linked to the onset of chronic inflammation, oxidative stress, and insulin resistance, key contributors to the development of MetS. We aim to investigate the relationship between the TRP metabolites and the risk of MetS in older adults.
View Article and Find Full Text PDFMol Med
January 2025
Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China.
Background: Mitochondrial dysfunction and neuronal damage are major sign of cytopathology in Huntington's disease (HD), a neurodegenerative disease. Ubiquitin specific peptidase 11 (USP11) is a deubiquitinating enzyme involved in various physiological processes through regulating protein degradation. However, its specific role in HD is unclear.
View Article and Find Full Text PDFBMC Neurosci
January 2025
Department of Emergency, Nantong Haimen District People's Hospital, No. 1201 Peking Road, Haimen District, Nantong, 226100, China.
Background: Intracerebral hemorrhage (ICH) is a common subtype of stroke, characterized by a high mortality rate and a tendency to cause neurological damage. This study aims to investigate the role and mechanisms of lncRNA HCP5 in ICH.
Methods: We simulated ICH in vivo by injecting collagenase into rats and established an in vitro model using hemoglobin-treated BV2 cells.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!