Long noncoding RNAs with snoRNA ends.

Mol Cell

State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.

Published: October 2012

We describe the discovery of sno-lncRNAs, a class of nuclear-enriched intron-derived long noncoding RNAs (lncRNAs) that are processed on both ends by the snoRNA machinery. During exonucleolytic trimming, the sequences between the snoRNAs are not degraded, leading to the accumulation of lncRNAs flanked by snoRNA sequences but lacking 5' caps and 3' poly(A) tails. Such RNAs are widely expressed in cells and tissues and can be produced by either box C/D or box H/ACA snoRNAs. Importantly, the genomic region encoding one abundant class of sno-lncRNAs (15q11-q13) is specifically deleted in Prader-Willi Syndrome (PWS). The PWS region sno-lncRNAs do not colocalize with nucleoli or Cajal bodies, but rather accumulate near their sites of synthesis. These sno-lncRNAs associate strongly with Fox family splicing regulators and alter patterns of splicing. These results thus implicate a previously unannotated class of lncRNAs in the molecular pathogenesis of PWS.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molcel.2012.07.033DOI Listing

Publication Analysis

Top Keywords

long noncoding
8
noncoding rnas
8
rnas snorna
4
snorna ends
4
ends describe
4
describe discovery
4
sno-lncrnas
4
discovery sno-lncrnas
4
sno-lncrnas class
4
class nuclear-enriched
4

Similar Publications

Dysregulation of long non-coding RNAs (lncRNAs) is implicated in the pathophysiology of ischemic stroke (IS). However, the molecular mechanism of the lncRNA SERPINB9P1 in IS remains unclear. Our study aimed to explore the role and molecular mechanism of the lncRNA SERPINB9P1 in IS.

View Article and Find Full Text PDF

DisGeNet: a disease-centric interaction database among diseases and various associated genes.

Database (Oxford)

January 2025

School of Computer Science and Technology, Xidian University, 266 Xinglong Section of Xifeng Road, Xi'an, Shaanxi 710126, China.

The pathogenesis of complex diseases is intricately linked to various genes and network medicine has enhanced understanding of diseases. However, most network-based approaches ignore interactions mediated by noncoding RNAs (ncRNAs) and most databases only focus on the association between genes and diseases. Based on the mentioned questions, we have developed DisGeNet, a database focuses not only on the disease-associated genes but also on the interactions among genes.

View Article and Find Full Text PDF

Correction: Qin et al. Production and Stabilization of Specific Upregulated Long Noncoding RNA HOXD-AS2 in Glioblastomas Are Mediated by TFE3 and miR-661, Respectively. 2022, , 2828.

Int J Mol Sci

December 2024

State Key Laboratory of Medical Molecular Biology, Medical Primate Research Center, Neuroscience Center, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China.

The authors wish to make the following correction to this paper [...

View Article and Find Full Text PDF

Myocardial infarction (MI) is a highly challenging and fatal disease, with diverse challenges arising at different stages of its progression. As such, non-coding RNAs (ncRNAs), which can broadly regulate cell fate, and stem cells with multi-differentiation potential are emerging as novel therapeutic approaches for treating MI across its various stages. NcRNAs, including microRNAs (miRNAs) and long non-coding RNAs (LncRNAs), can directly participate in regulating intracellular signaling pathways, influence cardiac angiogenesis, and promote the repair of infarcted myocardium.

View Article and Find Full Text PDF

Breast cancer (BC) is one of the most prevalent forms of cancer globally, and has recently become the leading cause of cancer-related mortality in women. BC is a heterogeneous disease comprising various histopathological and molecular subtypes with differing levels of malignancy, and each patient has an individual prognosis. Etiology and pathogenesis are complex and involve a considerable number of genetic alterations and dozens of alterations in non-coding RNA expression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!