AI Article Synopsis

  • Human kallikrein 7 (KLK7) is identified as a target for skin inflammation and cancer treatment, but there are few specific small-molecule inhibitors available.
  • The study explores novel pseudo-peptide inhibitors derived from isomannide and reports that two of these inhibitors show effective inhibition of KLK7 with low micromolar K(i) values.
  • Molecular dynamics simulations and binding energy calculations suggest that the inhibitors bind through hydrophobic interactions and hydrogen bonds, laying a foundation for further optimization of these compounds as kallikrein inhibitors.

Article Abstract

Human kallikrein 7 (KLK7) is a potential target for the treatment of skin inflammation and cancer. Despite its potential, few KLK7-specific small-molecule inhibitors have been reported in the literature. As an extension of our program to design serine protease inhibitors, here we describe the in vitro assays and the investigation of the binding mechanism by molecular dynamics simulation of a novel class of pseudo-peptide inhibitors derived from isomannide. Of the inhibitors tested, two inhibited KLK7 with K(i) values in the low micromolar range (9g=1.8μM; 9j=3.0μM). Eadie-Hofstee and Dixon plots were used to evaluate the competitive mechanism of inhibition for the molecules. Calculated binding free energies using molecular MM/PB(GB)SA approach are in good agreement with experimental results, suggesting that the inhibitors share the same binding mode, which is stabilized by hydrophobic interactions and by a conserved network of hydrogen bonds. The promising results obtained in this study make these compounds valid leads for further optimization studies aiming to improve the potency of this new class of kallikrein inhibitors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2012.08.047DOI Listing

Publication Analysis

Top Keywords

human kallikrein
8
inhibitors
7
isomannide derivatives
4
derivatives class
4
class inhibitors
4
inhibitors human
4
kallikrein human
4
kallikrein klk7
4
klk7 potential
4
potential target
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!