High-pressure macromolecular crystallography and NMR: status, achievements and prospects.

Curr Opin Struct Biol

Synchrotron Soleil, BP48 Saint Aubin, 91192 Gif sur Yvette, France.

Published: October 2012

Biomacromolecules are thermodynamic entities that exist in general as an equilibrium mixture of the basic folded state and various higher-energy substates including all functionally relevant ones. Under physiological conditions, however, the higher-energy substates are usually undetectable on spectroscopy, as their equilibrium populations are extremely low. Hydrostatic pressure gives a general solution to this problem. As proteins generally have smaller partial molar volumes in higher-energy states than in the basic folded state, pressure can shift the equilibrium toward the former substantially, and allows their direct detection and analysis with X-ray crystallography or NMR spectroscopy at elevated pressures. These techniques are now mature, and their status and selected applications are presented with future prospects.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.sbi.2012.07.007DOI Listing

Publication Analysis

Top Keywords

crystallography nmr
8
basic folded
8
folded state
8
higher-energy substates
8
high-pressure macromolecular
4
macromolecular crystallography
4
nmr status
4
status achievements
4
achievements prospects
4
prospects biomacromolecules
4

Similar Publications

Objective: In search of efficient anticancer agents, we aimed at the design and synthesis of a library of tetrasubstituted alkenes. These are structural analogues of tamoxifen, one of the widely used anticancer therapeutics.

Methods: Our small organic compound library was prepared via a chemical synthesis in the solution using the Larock three-component coupling reaction, which is known to tolerate diverse functional groups.

View Article and Find Full Text PDF

Mitochondrial metabolism requires the chaperoned import of disulfide-stabilized proteins via CHCHD4/MIA40 and its enigmatic interaction with oxidoreductase Apoptosis-inducing factor (AIF). By crystallizing human CHCHD4's AIF-interaction domain with an activated AIF dimer, we uncover how NADH allosterically configures AIF to anchor CHCHD4's β-hairpin and histidine-helix motifs to the inner mitochondrial membrane. The structure further reveals a similarity between the AIF-interaction domain and recognition sequences of CHCHD4 substrates.

View Article and Find Full Text PDF

Nickel complexes are a potential candidate for antibacterial and antifungal activity. A new Ni (II) complex, bis(2-methoxy-6-{[(2-methylpropyl)imino]methyl}phenolato)nickel (II) (2), was synthesised by reacting, bis(3-methoxy-salicylaldehyde)nickel (II) (1) with isobutylamine. It was characterised by single crystal X-ray diffraction (ScXRD), UV-Vis, NMR, IR, mass spectrometry, and thermogravimetry (TG) to study its structure and physico-chemical properties.

View Article and Find Full Text PDF

Azulene-1,3-bis(semicarbazone), , and azulene-1,3-bis(thiosemicarbazone), , were synthesized by the acid-catalyzed condensation reactions of semicarbazide and thiosemicarbazide, respectively, with azulene-1,3-dicarboxaldehyde in stoichiometric amounts. Compounds and were identified by high-resolution mass spectrometry and characterized by IR, H-NMR, C-NMR, and UV-vis spectroscopic techniques. Crystal structure determination of azulene-1,3-bis(thiosemicarbazone) shows that the thiosemicarbazone units exhibit a -closed conformation, with both arms oriented in the same direction and adopting an configuration with respect to the imine linkages.

View Article and Find Full Text PDF

In recent years, increased attention has been given to the effective use of chitin nanofibers (ChNFs). We have developed a method to fabricate thinner chitin nanomaterials, called scale-down chitin nanofibers (SD-ChNFs), by a bottom-up procedure at the nanoscale level, with subsequent disintegration by electrostatic repulsion. The surface modification of SD-ChNFs is anticipated to provide new properties and functions for their practical applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!