Multiple myeloma (MM) is an incurable hematological cancer involving proliferation of abnormal plasma cells that infiltrate the bone marrow (BM) and secrete monoclonal antibodies. The disease is clinically characterized by bone lesions, anemia, hypercalcemia, and renal failure. MM is presently treated with conventional therapies like melphalan, doxorubicin, and prednisone; or novel therapies like thalidomide, lenalidomide, and bortezomib; or with procedures like autologous stem cell transplantation. Unfortunately, these therapies fail to eliminate the minimal residual disease that remains persistent within the confines of the BM of MM patients. Mounting evidence indicates that components of the BM-including extracellular matrix, cytokines, chemokines, and growth factors-provide a sanctuary for subpopulations of MM. This co-dependent development of the disease in the context of the BM not only ensures the survival and growth of the plasma cells but contributes to de novo drug resistance. In addition, by fostering homing, angiogenesis, and osteolysis, this crosstalk plays a critical role in the progression of the disease. Not surprisingly then, over the past decade, several strategies have been developed to disrupt this communication between the plasma cells and the BM components including antibodies, peptides, and inhibitors of signaling pathways. Ultimately, the goal is to use these therapies in combination with the existing antimyeloma agents in order to further reduce or abolish minimal residual disease and improve patient outcomes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/B978-0-12-397927-8.00006-3 | DOI Listing |
Bioconjug Chem
January 2025
Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-5127, United States.
Red blood cells (RBCs) serve as natural transporters and can be modified to enhance the pharmacokinetics and pharmacodynamics of a protein cargo. Affinity targeting of Factor IX (FIX) to the RBC membrane is a promising approach to improve the (pro)enzyme's pharmacokinetics. For RBC targeting, purified human FIX was conjugated to the anti-mouse glycophorin A monoclonal antibody Ter119.
View Article and Find Full Text PDFBlood
January 2025
University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States.
Blood clots are complex structures composed of blood cells and proteins held together by the structural framework provided by an insoluble fibrin network. Factor (F)XIII is a protransglutaminase essential for stabilizing the fibrin network. Activated FXIII(a) introduces novel covalent crosslinks within and between fibrin and other plasma and cellular proteins, and thereby promotes fibrin biochemical and mechanical integrity.
View Article and Find Full Text PDFPLoS One
January 2025
Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Muenster, Muenster, Germany.
Weibel-Palade bodies (WPB) are secretory organelles exclusively found in endothelial cells and among other cargo proteins, contain the hemostatic von-Willebrand factor (VWF). Stimulation of endothelial cells results in exocytosis of WPB and release of their cargo into the vascular lumen, where VWF unfurls into long strings of up to 1000 µm and recruits platelets to sites of vascular injury, thereby mediating a crucial step in the hemostatic response. The function of VWF is strongly correlated to its structure; in order to fulfill its task in the vascular lumen, VWF has to undergo a complex packing/processing after translation into the ER.
View Article and Find Full Text PDFJ Cell Biol
April 2025
Team R2D2: Retroviral RNA Dynamics and Delivery, IRIM, UMR9004, CNRS, University of Montpellier, Montpellier, France.
Retroviruses carry a genomic intron-containing RNA with a long structured 5'-untranslated region, which acts either as a genome encapsidated in the viral progeny or as an mRNA encoding the key structural protein, Gag. We developed a single-molecule microscopy approach to simultaneously visualize the viral mRNA and the nascent Gag protein during translation directly in the cell. We found that a minority of the RNA molecules serve as mRNA and that they are translated in a fast and efficient process.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Physics, Shahid Beheshti University, Tehran 1635649771, Iran.
We present a method for conjugating antigens to gold nanoparticles (GNPs) during their synthesis via gas plasma, eliminating the need for chemical linkers and significantly speeding up the process (taking only 15 min). This fast, linker-free method produces biocompatible and stable GNPs, with potential for immunotherapy applications, such as antigen and antibody conjugation and drug delivery. We demonstrate the conjugation of the antigen Nestin (NES), a tumor marker, to GNPs using two approaches.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!