Synthesis and properties of new luminescent hole transporting materials containing triphenylamine and carbazole units.

Spectrochim Acta A Mol Biomol Spectrosc

School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.

Published: December 2012

Two new blue luminescent hole transporting materials (HTM) containing triphenylamine, carbazole units and olefinic linkers (TM1 and TM2) were synthesized via Wittig reaction and characterized by (1)H NMR, FT-IR, and HRMS. The compounds show good solubility in common organic solvents such as dichloromethane, chloroform, tetrahydrofuran and dimethyl formamide. Their optical, electrochemical and crystalline properties were investigated by using UV-Vis, photoluminescence (PL) spectra, cyclic voltammetry (CV) and differential scanning calorimetry (DSC), respectively. Quantum-chemical calculation was performed to obtain their optimized structures and the electron distribution of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) energy levels. The UV-Vis absorption and PL spectra of the two compounds in solid state were found to be similar to that when they were in dilute THF, which suggests that these compounds remain as an amorphous state in solid films. CV measurements show that the two compounds embody suitable HOMO levels (in a range of -5.28 to -5.23 eV) for hole injection, which is consistent with the calculation consequence. Two compounds possess high glass-transition temperature (T(g)) at 96.61 and 90.74 °C for TM1 and TM2, respectively, suggesting the two compounds could form stable amorphous glassy states. The experimental results show that the synthesized compounds have great potential for application in organic light-emitting devices (OLEDs).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2012.07.124DOI Listing

Publication Analysis

Top Keywords

luminescent hole
8
hole transporting
8
transporting materials
8
triphenylamine carbazole
8
carbazole units
8
tm1 tm2
8
molecular orbital
8
compounds
7
synthesis properties
4
properties luminescent
4

Similar Publications

Tailored large-particle quantum dots with high color purity and excellent electroluminescent efficiency.

Sci Bull (Beijing)

January 2025

Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China; Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Zhuhai MUST Science and Technology Research Institute, Macau University of Science and Technology, Macao 999078, China; Institute of Organic Optoelectronics (IOO), Jiangsu Industrial Technology Research Institute (JITRI), Suzhou 215200, China. Electronic address:

High-quality quantum dots (QDs) possess superior electroluminescent efficiencies and ultra-narrow emission linewidths are essential for realizing ultra-high definition QD light-emitting diodes (QLEDs). However, the synthesis of such QDs remains challenging. In this study, we present a facile high-temperature successive ion layer adsorption and reaction (HT-SILAR) strategy for the growth of precisely tailored ZnCdSe/ZnSe shells, and the consequent production of high-quality, large-particle, alloyed red CdZnSe/ZnCdSe/ZnSe/ZnS/CdZnS QDs.

View Article and Find Full Text PDF

Performance Study of Ultraviolet AlGaN/GaN Light-Emitting Diodes Based on Superlattice Tunneling Junction.

Micromachines (Basel)

December 2024

State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, Xidian University, Xi'an 710071, China.

In this study, we aim to enhance the internal quantum efficiency (IQE) of AlGaN-based ultraviolet (UV) light-emitting diodes (LEDs) by using the short-period AlGaN/GaN superlattice as a tunnel junction (TJ) to construct polarized structures. We analyze in detail the effect of this polarized TJ on the carrier injection efficiency and investigate the increase in hole and electron density caused by the formation of 2D hole gas (2DHG) and 2D electron gas (2DEG) in the superlattice structure. In addition, a dielectric layer is introduced to evaluate the effect of stress changes on the tunneling probability and current spread in TJ.

View Article and Find Full Text PDF

Mid-Infrared High-Power InGaAsSb/AlGaInAsSb Multiple-Quantum-Well Laser Diodes Around 2.9 μm.

Nanomaterials (Basel)

January 2025

Key Laboratory of Optoelectronic Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China.

Antimonide laser diodes, with their high performance above room temperature, exhibit significant potential for widespread applications in the mid-infrared spectral region. However, the laser's performance significantly degrades as the emission wavelength increases, primarily due to severe quantum-well hole leakage and significant non-radiative recombination. In this paper, we put up an active region with a high valence band offset and excellent crystalline quality with high luminescence to improve the laser's performance.

View Article and Find Full Text PDF

Analysis of Refractive Index Sensing Properties of a Hybrid Hollow Cylindrical Tetramer Array.

Nanomaterials (Basel)

January 2025

Xinjiang Key Laboratory for Luminescence Minerals and Optical Functional Materials, School of Physics and Electronic Engineering, Xinjiang Normal University, Urumqi 830054, China.

In recent years, metal surface plasmon resonance sensors and dielectric guided-mode resonance sensors have attracted the attention of researchers. Metal sensors are sensitive to environmental disturbances but have high optical losses, while dielectric sensors have low losses but limited sensitivity. To overcome these limitations, hybrid resonance sensors that combine the advantages of metal and dielectric were proposed to achieve a high sensitivity and a high factor at the same time.

View Article and Find Full Text PDF

Noncovalent forces have a significant impact on photophysical properties, and the flexible employment of weak forces facilitates the design of novel luminescent materials with a variety of applications. The arene-perfluoroarene (AP) force, as one type of π-hole/π interaction, shows unique directionality, involving an electron-deficient π-hole interacting with a π-electron-rich region, facilitating precise orientation and stabilization in supramolecular structures. Here we present an amination engineering protocol to build a perfluoroarene library based on an octafluoronaphthalene skeleton with various steric and electronic properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!