Fruits are an important part of a healthy diet. They provide essential vitamins and minerals, and their consumption is associated with a reduced risk of heart disease and certain cancers. These important plant products can, however, be expensive to purchase, may be of disappointing quality and often have a short shelf life. A major challenge for crop improvement in fleshy fruit species is the enhancement of their health-promoting attributes while improving quality and reducing postharvest waste. To achieve these aims, a sound mechanistic understanding of the processes involved in fruit development and ripening is needed. In recent years, substantial insights have been made into the mechanistic basis of ethylene biosynthesis, perception and signalling and the identity of master regulators of ripening that operate upstream of, or in concert with a regulatory pathway mediated by this plant hormone. The role of other plant hormones in the ripening process has, however, remained elusive, and the links between regulators and downstream processes are still poorly understood. In this review, we focus on tomato as a model for fleshy fruit and provide an overview of the molecular circuits known to be involved in ripening, especially those controlling pigment accumulation and texture changes. We then discuss how this information can be used to understand ripening in other fleshy fruit-bearing species. Recent developments in comparative genomics and systems biology approaches are discussed. The potential role of epigenetic changes in generating useful variation is highlighted along with opportunities for enhancing the level of metabolites that have a beneficial effect on human health.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1467-7652.2012.00738.x | DOI Listing |
J Exp Bot
January 2025
KU Leuven, BIOSYST-MeBioS, Willem de Croylaan 42, 3001 Leuven, Belgium.
Tomato (Solanum lycopersicum L.) is an important model plant whose fleshy fruit consists of well-differentiated tissues. Recently it was shown that these tissues develop hypoxia during fruit development and ripening.
View Article and Find Full Text PDFJ Exp Bot
January 2025
Advanced Genomics Unit, Center for Research and Advanced Studies (Cinvestav), Irapuato, Mexico.
Arabidopsis has served as a model plant for studying the genetic networks that guide gynoecium development. However, less is known about other species such as tomato, a model for fleshy fruit development and ripening. Here, we study in tomato the transcription factor SPATULA (SPT), a bHLH-family member that in Arabidopsis is known to be important for gynoecium development.
View Article and Find Full Text PDFHortic Res
January 2025
Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China.
Sugars act as signaling molecules to modulate various growth processes and enhance plant tolerance to various abiotic and biotic stresses. Moreover, sugars contribute to the postharvest flavor in fleshy fruit crops. To date, the regulation of sugar metabolism and its effect in plant growth, fruit ripening, postharvest quality, and stress resistance remains not fully understood.
View Article and Find Full Text PDFEcol Lett
January 2025
State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.
Biotic interactions play an important role in species diversification and maintenance and, thus, are regarded as the architecture of biodiversity. Since Darwin and Wallace, biologists have debated whether biotic interactions are stronger towards the tropics and on continents, when compared to temperate regions and islands. Here, based on 354 avian frugivory networks accounting for 22,199 interactions between 1247 bird species and 2126 plant species, we quantified trait matching strength, which reflects interaction strength and specificity, across gradients of latitude and insularity globally.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China/Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China. Electronic address:
Seed development is one of the most important agricultural traits, determining both the crop yield and quality of fleshy fruits. A typically abortive litchi cultivar, Guiwei, exhibits heterogeneity in seed size across production areas, years, and individual trees. Previous studies have shown that 'Guiwei' seed development failure is associated with endosperm arrest and chilling conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!