Heterologous gene expression in filamentous fungi.

Adv Appl Microbiol

Energy Biosciences Institute, University of Illinois, Urbana, IL, USA; Institute for Genomic Biology, University of Illinois, Urbana, IL, USA; Equal contribution.

Published: April 2016

Filamentous fungi are critical to production of many commercial enzymes and organic compounds. Fungal-based systems have several advantages over bacterial-based systems for protein production because high-level secretion of enzymes is a common trait of their decomposer lifestyle. Furthermore, in the large-scale production of recombinant proteins of eukaryotic origin, the filamentous fungi become the vehicle of choice due to critical processes shared in gene expression with other eukaryotic organisms. The complexity and relative dearth of understanding of the physiology of filamentous fungi, compared to bacteria, have hindered rapid development of these organisms as highly efficient factories for the production of heterologous proteins. In this review, we highlight several of the known benefits and challenges in using filamentous fungi (particularly Aspergillus spp., Trichoderma reesei, and Neurospora crassa) for the production of proteins, especially heterologous, nonfungal enzymes. We review various techniques commonly employed in recombinant protein production in the filamentous fungi, including transformation methods, selection of gene regulatory elements such as promoters, protein secretion factors such as the signal peptide, and optimization of coding sequence. We provide insights into current models of host genomic defenses such as repeat-induced point mutation and quelling. Furthermore, we examine the regulatory effects of transcript sequences, including introns and untranslated regions, pre-mRNA (messenger RNA) processing, transcript transport, and mRNA stability. We anticipate that this review will become a resource for researchers who aim at advancing the use of these fascinating organisms as protein production factories, for both academic and industrial purposes, and also for scientists with general interest in the biology of the filamentous fungi.

Download full-text PDF

Source
http://dx.doi.org/10.1016/B978-0-12-394382-8.00001-0DOI Listing

Publication Analysis

Top Keywords

filamentous fungi
28
protein production
12
gene expression
8
filamentous
7
fungi
7
production
7
heterologous gene
4
expression filamentous
4
fungi filamentous
4
fungi critical
4

Similar Publications

Electron transfer in polysaccharide monooxygenase catalysis.

Proc Natl Acad Sci U S A

January 2025

California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720.

Polysaccharide monooxygenase (PMO) catalysis involves the chemically difficult hydroxylation of unactivated C-H bonds in carbohydrates. The reaction requires reducing equivalents and will utilize either oxygen or hydrogen peroxide as a cosubstrate. Two key mechanistic questions are addressed here: 1) How does the enzyme regulate the timely and tightly controlled electron delivery to the mononuclear copper active site, especially when bound substrate occludes the active site? and 2) How does this electron delivery differ when utilizing oxygen or hydrogen peroxide as a cosubstrate? Using a computational approach, potential paths of electron transfer (ET) to the active site copper ion were identified in a representative AA9 family PMO from (PMO9E).

View Article and Find Full Text PDF

Characterization of fungal carbonyl sulfide hydrolase belonging to clade D β-carbonic anhydrase.

FEBS Lett

January 2025

Department of Symbiotic Science of Environment and Natural Resources, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Japan.

Carbonyl sulfide hydrolase (COSase) is a unique enzyme that exhibits high activity towards carbonyl sulfide (COS) but low carbonic anhydrase (CA) activity, despite belonging to the CA family. COSase was initially identified in a sulfur-oxidizing bacterium and later discovered in the ascomycete Trichoderma harzianum strain THIF08. The COSase from T.

View Article and Find Full Text PDF

Fungal Osteomyelitis of a Diabetic Foot Infection Caused by Trichosporon asahii: A Case Report.

Adv Skin Wound Care

January 2025

At Baylor College of Medicine, Houston, Texas, United States, Livia Frost, BS, is Medical Student, School of Medicine; Ya Xu, MD, PhD, is Assistant Professor, Department of Pathology & Immunology; and Yuriko Fukuta, MD, PhD, CWSP, is Assistant Professor, Department of Medicine, Section of Infectious Diseases.

Diabetic foot bacterial osteomyelitis is a serious infection that can lead to major amputations. However, fungal osteomyelitis in a diabetic foot ulcer is uncommon and has been underrecognized. It typically occurs in patients with underlying immunocompromised status and is associated with poor outcomes.

View Article and Find Full Text PDF

Pathogenic Aspergillus spp. and Candida spp. in coastal waters from southern Brazil: an one health approach.

Braz J Microbiol

January 2025

Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina (FaMed), Universidade Federal do Rio Grande (FURG), Rio Grande, RS, Brasil.

Aspergillus and Candida are ubiquitous fungi included in the group of high priority in the World Health Organization list of fungal pathogens. They are found in various ecosystems and the environmental role in increasing the resistance to antifungals has been shown. Thus, we aimed to determine the occurrence of Aspergillus spp.

View Article and Find Full Text PDF

Vulvovaginal candidiasis (VVC) represents the second cause of vaginal infections in childbearing-age women. It mainly affects the vulva and vagina; however, other organs can be compromised, with consequences that are not well known yet. To evaluate the ability of Candida albicans, inoculated into the vaginal lumen of mice, to migrate to the uterus and ovaries.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!