Purpose: How do display settings and ambient lighting affect contrast detection thresholds for human observers? Can recalibrating a display for high ambient lighting improve object detection?
Methods: Contrast∕detail (CD) threshold detection performance was measured for observers using four color displays with varying overall contrast (e.g., differing maximum luminance and ambient lighting conditions). Detailed mapping of contrast detection performance (for fixed object size) was tracked as a function of: display maximum luminance, ambient lighting changes (with and without recalibrating for the higher ambience), and the performance of radiologists vs. nonradiologists.
Results: The initial phase was analyzed with a hierarchical linear model of observer performance using: background gray level, maximum display luminance, and radiologist vs. nonradiologist. The only statistically significant finding was a maximum luminance of 100 cd∕m(2) display performing worse than a baseline peak of 400 cd∕m(2). The second phase examined ambient lighting effects on detection thresholds. Background gray level and maximum display luminance were examined coupled with ambient lighting for: baseline at 30, 435 uncorrected, and 435 lx with display recalibration for the ambient conditions. Results showed ambient correction improved sensitivity for small background digital driving level, but not at higher luminance backgrounds.
Conclusions: For CD study, nonradiologist observers can be used without loss of applicability. Contrast detection thresholds improved significantly between displays with peak luminance from 100 cd∕m(2) to 200 cd∕m(2), but improvement beyond that was not statistically significant for contrast detection thresholds in a reading room environment. Applying a calibration correction at high ambience (435 lx) improved detection tasks primarily in the darker background regions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3895086 | PMC |
http://dx.doi.org/10.1118/1.4742851 | DOI Listing |
Nanoscale
January 2025
School of Sustainable Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, OK 73019, USA.
Serum albumin has myriad uses in biotechnology, but its value as a nanocarrier or nanoplatform for therapeutics is becoming increasingly important, notably with albumin-bound chemotherapeutics. Another emerging field is the fabrication of biopolymeric nanoparticles using albumin as a building block to achieve highly-tunable nonimmunogenic capsules or scaffolds that may be cheaply and reliably produced. The aim of this study was to characterize and optimize the desolvation process used for fabrication of albumin nanoparticles under ambient conditions, studying both glutaraldehyde (GT) and glucose (GLU) as crosslinking agents and the effect of various synthesis conditions including pH, electrolyte concentration, and rate of desolvation on particle size and stability.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, Hong Kong.
Lead-free halide double perovskites provide a promising solution for the long-standing issues of lead-containing halide perovskites, i.e., the toxicity of Pb and the low stability under ambient conditions and high-intensity illumination.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Institute for Materials Discovery, University College London, London WC1E 7JE, U.K.
Paper is an ideal platform for creating flexible and eco-friendly electronic systems. Leveraging the synergistic integration of zero- and two-dimensional materials, it unfolds a broad spectrum of applications within the realm of the Internet of Things (IoT), spanning from wearable electronics to smart packaging solutions. However, for paper without a polymer coating, the rough and porous nature presents significant challenges as a substrate for electronics, and the absence of well-established fabrication methods further hinders its application in wearable electronics.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
State Key Laboratory for Manufacturing Systems Engineering, School of Instrument Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China.
Nucleic acid testing is the most effective detection method currently available for the diagnosis of respiratory infectious diseases. However, the conventional real-time fluorescent quantitative PCR technique, which is regarded as the gold standard method for nucleic acid detection, presents significant challenges for implementation in home self-testing and popularization in underdeveloped regions due to its rigorous experimental standards. It is therefore clear that an easy-to-use, miniaturized nucleic acid testing technology and products for nonprofessionals are of great necessity to define the pathogens and assist in controlling disease transmission.
View Article and Find Full Text PDFChemSusChem
January 2025
Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P.R. China.
Inverted perovskite solar cells (IPSCs) utilizing nickel oxide (NiO) as hole transport material have made great progress, driven by improvements in materials and interface engineering. However, challenges remain due to the low intrinsic conductivity of NiO and inefficient hole transport. In this study, we introduced MoS nanoparticles at the indium tin oxide (ITO) /NiO interface to enhance the ITO surface and optimize the deposition of NiO, resulting in increased conductivity linked to a ratio of Ni:Ni.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!