Theory and simulation of organic solar cell model compounds: how packing and morphology determine the electronic conductivity.

J Chem Phys

Institut für Physikalische Chemie, Universität Freiburg, Albertstraße 23a, D-79104 Freiburg im Breisgau, Germany.

Published: September 2012

We approach the electronic conductivity of simple models of organic solar cells containing linear and branched αα'-oligothiophenes and buckminsterfullerene. Close-packed model geometries are generated using a Monte Carlo method, this procedure is verified making use of an analogue model. The electronic structure is described by an extended Su-Schrieffer-Heeger Hamiltonian, the resulting potential energy surfaces relevant to charge transfer can be analyzed using Marcus' theory, leading to local and--via Kirchhoff's rule--global conductivities for uniform oligothiophene and fullerene systems and their mixtures. Dense fullerene systems or subsystems always exhibit a conductivity in excess of 100 S/cm. In contrast, oligothiophenes show a comparable conductivity only for uniform, well-ordered arrangements of layers. Branched oligomers show only a slight improvement over linear oligothiophenes. Our results support the bulk heterojunction approach as a design principle of organic solar cells from a theoretical perspective.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4748816DOI Listing

Publication Analysis

Top Keywords

organic solar
12
electronic conductivity
8
solar cells
8
fullerene systems
8
theory simulation
4
simulation organic
4
solar cell
4
cell model
4
model compounds
4
compounds packing
4

Similar Publications

Interest in organic solar cells (OSCs) is constantly rising in the field of photovoltaic devices. The device performance relies on the bulk heterojunction (BHJ) nanomorphology, which develops during the drying process and additional post-treatment. This work investigates the effect of thermal annealing (TA) on the all-small molecule DRCN5T:PCBM blend with phase field simulations.

View Article and Find Full Text PDF

Does light or heat play a seminal role in photo-rechargeable batteries? This study unravels the effects of light in the exciton formation and separation processes in a photocathode, leading to the charging or de-intercalation of Li ions in a lithium-ion battery. Light induced oxidation of Ti to Ti in the Li(TiS-TiO) heterostructure cathode is shown here, while heating does not elicit such changes. With the aid of photogenerated electrons at the cathode, the de-lithiated Li ions from Li(TiS-TiO) get intercalated in the graphite anode during the photocharging process.

View Article and Find Full Text PDF

Spiro architectures with π-conjugation have improved thermal stability and stronger photosensitivity, making them potentially useful for organic optoelectronic devices. Our recent work has demonstrated the synthetic chemistry of a novel thiophene oligomer combining 2,7-dihydrooxepine and dispiro structure and derived it into A-D-A-type compounds. The optical spectroscopy and electrochemical characteristics were investigated.

View Article and Find Full Text PDF

Organic-inorganic formamidinium lead triiodide (FAPbI) hybrid perovskite quantum dots (QDs) have garnered considerable attention in the photovoltaic field due to their narrow bandgap, exceptional environmental stability, and prolonged carrier lifetime. Unfortunately, their insulating ligands and surface vacancy defects pose significant obstacles to efficient charge transfer across device interfaces. In this work, an electrostatic harmonization strategy at the interface using a donor-acceptor dipole molecular attachment to achieve enhanced charge separation capabilities on the QD surface is ventured.

View Article and Find Full Text PDF

Improving the interface characteristics between the hole-transport layer (HTL) and perovskite absorber layer is crucial for achieving maximum efficiency in inverted perovskite solar cells (PSCs). This paper presents an effective functional compensation layer (FCL) composed of benzothiophene derivatives, particularly 5-(trifluoromethyl)-1-benzothiophene-2-carboxylic acid (TFMBTA); this layer is introduced between the MeO-2PACz HTL and perovskite absorber layer to improve the interfacial characteristics between them. This FCL improves charge transfer, hole extraction, and perovskite deposition by improving the surface morphology of the HTL and optimizing the energy level alignment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!