The long-term maintenance of specialized mutualisms remains an evolutionary puzzle. Recent focus has been on factors governing the stability of these mutualisms, including sanctions by the host, partner choice, and coevolutionary constraint, that is, the genetic correlation (r(G)) between fitness of both partners. So far these studies have been typically carried out in a single environment. Here, we ask if the genetic correlation between fitness of the host plant Medicago truncatula (Fabaceae) and its bacterial symbiont Sinorhizobium meliloti is affected by the presence/absence of a monoterpene (carvacrol) leached into the soil by Thymus vulgaris-a common plant of the Mediterranean vegetation, often co-occuring with Medicago. We show that the presence of carvacrol in the soil dramatically affects fitness of the rhizobial partner and increases the magnitude of r(G) between plant and rhizobia fitness (r(G) = 0.02 ± 0.05 vs. r(G) = 0.57 ± 0.02). This finding emphasizes the importance of heterogeneity in the biotic environment for understanding the evolution of species interactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3434918PMC
http://dx.doi.org/10.1002/ece3.270DOI Listing

Publication Analysis

Top Keywords

host plant
8
plant medicago
8
medicago truncatula
8
truncatula fabaceae
8
sinorhizobium meliloti
8
genetic correlation
8
correlation fitness
8
"ménage trois"
4
trois" presence/absence
4
presence/absence thyme
4

Similar Publications

Genetic diversity within a tree and alternative indexes for different evolutionary effects.

Quant Plant Biol

December 2024

Department of Biology, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.

Trees, living for centuries, accumulate somatic mutations in their growing trunks and branches, causing genetic divergence within a single tree. Stem cell lineages in a shoot apical meristem accumulate mutations independently and diverge from each other. In plants, somatic mutations can alter the genetic composition of reproductive organs and gametes, impacting future generations.

View Article and Find Full Text PDF

Sialoadhesin-dependent susceptibility and replication of porcine reproductive and respiratory syndrome viruses in CD163-expressing cells.

Front Vet Sci

December 2024

Viral Diseases Research Division, Animal and Plant Quarantine Agency, Gimcheon, Gyeongsangbuk-do, Republic of Korea.

Understanding the molecular interactions between porcine reproductive and respiratory syndrome viruses (PRRSVs) and host cells is crucial for developing effective strategies against PRRSV. CD163, predominantly expressed in porcine macrophages and monocytes, is a key receptor for PRRSV infection. CD169, also known as Sialoadhesin, has emerged as a potential receptor facilitating PRRSV internalization.

View Article and Find Full Text PDF

VPI-MD: a multi-omics database for Verticillium-plant interaction.

Plant Biotechnol J

January 2025

Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Bingtuan, College of Life Sciences, Shihezi University, Shihezi, China.

View Article and Find Full Text PDF

Alpine areas are host to diverse plant communities that support ecosystems through structural and floral resources and persist through specialized adaptations to harsh high-elevation conditions. An ongoing question in these plant communities is whether composition is shaped by stochastic processes (e.g.

View Article and Find Full Text PDF

An emerging fungal disease is spreading across the globe and affecting the blueberry industry.

New Phytol

January 2025

Harvard University Herbaria and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.

Powdery mildew is an economically important disease caused by c. 1000 different fungal species. Erysiphe vaccinii is an emerging powdery mildew species that is impacting the blueberry industry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!