Congenital disorder of glycosylation (PMM2-CDG) results from mutations in pmm2, which encodes the phosphomannomutase (Pmm) that converts mannose-6-phosphate (M6P) to mannose-1-phosphate (M1P). Patients have wide-spectrum clinical abnormalities associated with impaired protein N-glycosylation. Although it has been widely proposed that Pmm2 deficiency depletes M1P, a precursor of GDP-mannose, and consequently suppresses lipid-linked oligosaccharide (LLO) levels needed for N-glycosylation, these deficiencies have not been demonstrated in patients or any animal model. Here we report a morpholino-based PMM2-CDG model in zebrafish. Morphant embryos had developmental abnormalities consistent with PMM2-CDG patients, including craniofacial defects and impaired motility associated with altered motor neurogenesis within the spinal cord. Significantly, global N-linked glycosylation and LLO levels were reduced in pmm2 morphants. Although M1P and GDP-mannose were below reliable detection/quantification limits, Pmm2 depletion unexpectedly caused accumulation of M6P, shown earlier to promote LLO cleavage in vitro. In pmm2 morphants, the free glycan by-products of LLO cleavage increased nearly twofold. Suppression of the M6P-synthesizing enzyme mannose phosphate isomerase within the pmm2 background normalized M6P levels and certain aspects of the craniofacial phenotype and abrogated pmm2-dependent LLO cleavage. In summary, we report the first zebrafish model of PMM2-CDG and uncover novel cellular insights not possible with other systems, including an M6P accumulation mechanism for underglycosylation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3484097 | PMC |
http://dx.doi.org/10.1091/mbc.E12-05-0411 | DOI Listing |
Biochem Soc Trans
June 2016
Centre for Plant Sciences, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, U.K.
Import of β-oxidation substrates into peroxisomes is mediated by ATP binding cassette (ABC) transporters belonging to subfamily D. In order to enter the β-oxidation pathway, fatty acids are activated by conversion to fatty acyl-CoA esters, a reaction which is catalysed by acyl-CoA synthetases (ACSs). Here, we present evidence for an unusual transport mechanism, in which fatty acyl-CoA substrates are accepted by ABC subclass D protein (ABCD) transporters, cleaved by the transporters during transit across the lipid bilayer to release CoA, and ultimately re-esterified in the peroxisome lumen by ACSs which interact with the transporter.
View Article and Find Full Text PDFJ Proteomics
March 2015
INRA, UR454 Microbiologie, F-63122 Saint-Genès Champanelle, France. Electronic address:
Unlabelled: As commonly seen in monoderm bacteria, Listeria monocytogenes possesses multiple membrane-bound signal peptidases of Type I (SPases I) called SipX, SipY and SipZ. In order to decipher their respective contribution in an integrated and global view, the complement of the secretome corresponding to the exoproteome was resolved by two-dimensional gel electrophoresis (2-DE). This was performed for L.
View Article and Find Full Text PDFMol Biol Cell
November 2012
Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA.
Congenital disorder of glycosylation (PMM2-CDG) results from mutations in pmm2, which encodes the phosphomannomutase (Pmm) that converts mannose-6-phosphate (M6P) to mannose-1-phosphate (M1P). Patients have wide-spectrum clinical abnormalities associated with impaired protein N-glycosylation. Although it has been widely proposed that Pmm2 deficiency depletes M1P, a precursor of GDP-mannose, and consequently suppresses lipid-linked oligosaccharide (LLO) levels needed for N-glycosylation, these deficiencies have not been demonstrated in patients or any animal model.
View Article and Find Full Text PDFPLoS Pathog
January 2013
Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America.
The cysteine protease caspase-7 has an established role in the execution of apoptotic cell death, but recent findings also suggest involvement of caspase-7 during the host response to microbial infection. Caspase-7 can be cleaved by the inflammatory caspase, caspase-1, and has been implicated in processing and activation of microbial virulence factors. Thus, caspase-7 function during microbial infection may be complex, and its role in infection and immunity has yet to be fully elucidated.
View Article and Find Full Text PDFMol Biol Cell
September 2011
Departments of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA.
Mannose-6-phosphate (M6P) is an essential precursor for mannosyl glycoconjugates, including lipid-linked oligosaccharides (LLO; glucose(3)mannose(9)GlcNAc(2)-P-P-dolichol) used for protein N-glycosylation. In permeabilized mammalian cells, M6P also causes specific LLO cleavage. However, the context and purpose of this paradoxical reaction are unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!