Appropriate animal models are required to test medical countermeasures to bioterrorist threats. To that end, we characterized a nonhuman primate (NHP) inhalational anthrax therapeutic model for use in testing anthrax therapeutic medical countermeasures according to the U.S. Food and Drug Administration Animal Rule. A clinical profile was recorded for each NHP exposed to a lethal dose of Bacillus anthracis Ames spores. Specific diagnostic parameters were detected relatively early in disease progression, i.e., by blood culture (∼37 h postchallenge) and the presence of circulating protective antigen (PA) detected by electrochemiluminescence (ECL) ∼38 h postchallenge, whereas nonspecific clinical signs of disease, i.e., changes in body temperature, hematologic parameters (ca. 52 to 66 h), and clinical observations, were delayed. To determine whether the presentation of antigenemia (PA in the blood) was an appropriate trigger for therapeutic intervention, a monoclonal antibody specific for PA was administered to 12 additional animals after the circulating levels of PA were detected by ECL. Seventy-five percent of the monoclonal antibody-treated animals survived compared to 17% of the untreated controls, suggesting that intervention at the onset of antigenemia is an appropriate treatment trigger for this model. Moreover, the onset of antigenemia correlated with bacteremia, and NHPs were treated in a therapeutic manner. Interestingly, brain lesions were observed by histopathology in the treated nonsurviving animals, whereas this observation was absent from 90% of the nonsurviving untreated animals. Our results support the use of the cynomolgus macaque as an appropriate therapeutic animal model for assessing the efficacy of medical countermeasures developed against anthrax when administered after a confirmation of infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3491545PMC
http://dx.doi.org/10.1128/CVI.00288-12DOI Listing

Publication Analysis

Top Keywords

medical countermeasures
12
bacillus anthracis
8
therapeutic model
8
anthrax therapeutic
8
onset antigenemia
8
therapeutic
6
development inhalational
4
inhalational bacillus
4
anthracis exposure
4
exposure therapeutic
4

Similar Publications

In the modern medical education system, teaching of clinical neurology in outpatient settings is crucial for training future neurologists. The neurology outpatient clinic is a pivotal setting for both initial consultations and follow-up visits. It plays a significant role in the prevention, diagnosis, treatment, and ongoing monitoring of neurological disorders, and is a critical platform for clinical education.

View Article and Find Full Text PDF

Tandospirone prevents anesthetic-induced respiratory depression through 5-HT receptor activation in rats.

Sci Rep

January 2025

Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Taiping Road 27, Beijing, 100850, China.

Respiratory depression is a side effect of anesthetics. Treatment with specific antagonists or respiratory stimulants can reverse respiratory depression caused by anesthetics; however, they also interfere with the sedative effects of anesthetics. Previous studies have suggested that tandospirone may ameliorate respiratory depression without affecting the sedative effects of anesthetics.

View Article and Find Full Text PDF

[Clinical Impact of Current Variants in COVID-19 Patients: Clinical Characteristics in Variant EG.5].

Mikrobiyol Bul

October 2024

University of Health Sciences, Ankara Bilkent City Health Application and Research Center, Clinic of Medical Microbiology, Ankara, Türkiye.

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) virus has mutated at a high rate since the beginning of the pandemic, leading to the formation of different variants. Alpha, Beta, Gamma, Delta and Omicron have emerged as concerning variants identified by the World Health Organization (WHO). The Omicron variant and its sublineages became dominant worldwide in 2022.

View Article and Find Full Text PDF

A Surrogate BSL2-compliant Infection Model Recapitulating Key Aspects of Human Marburg Virus Disease.

Emerg Microbes Infect

January 2025

State Key Laboratory of Pathogenic Microorganisms, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China.

Marburg virus disease (MVD) is a severe infectious disease characterized by fever and profound hemorrhage caused by the Marburg virus (MARV), with a mortality rate reaching 90%, posing a significant threat to humans. MARV lies in its classification as a biosafety level four (BSL-4) pathogen, which demands stringent experimental conditions and substantial funding. Therefore, accessible and practical animal models are urgently needed to advance prophylactic and therapeutic strategies for MARV.

View Article and Find Full Text PDF

Introduction: First responders play a pivotal role in ensuring the wellbeing of individuals during critical situations. The demanding nature of their work exposes them to prolonged shifts and unpredictable situations, leading to elevated fatigue levels. Modern countermeasures to fatigue do not provide the best results.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!