Fat-splitting enzymes (lipases), due to their natural, industrial, and medical relevance, attract enough attention as fats do in our lives. Starting from the paper that we write, cheese and oil that we consume, detergent that we use to remove oil stains, biodiesel that we use as transportation fuel, to the enantiopure drugs that we use in therapeutics, all these applications are facilitated directly or indirectly by lipases. Due to their uniqueness, versatility, and dexterity, decades of research work have been carried out on microbial lipases. The hunt for novel lipases and strategies to improve them continues unabated as evidenced by new families of microbial lipases that are still being discovered mostly by metagenomic approaches. A separate database for true lipases termed LIPABASE has been created recently which provides taxonomic, structural, biochemical information about true lipases from various species. The present review attempts to summarize new approaches that are employed in various aspects of microbial lipase research, viz., screening, isolation, production, purification, improvement by protein engineering, and surface display. Finally, novel applications facilitated by microbial lipases are also presented.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12010-012-9849-7 | DOI Listing |
Mar Pollut Bull
January 2025
Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266100, China. Electronic address:
The excessive use of antibiotics in mariculture has surpassed permitted levels, leading to their release into surrounding waters and accumulation in cultured organisms, which poses risks to human health and highlighting the urgent need for alternatives to reduce antibiotic use. Therefore, the present study aimed to test four microbes including Debaryomyces hansenii, Ruegeria mobilis, Lactobacillus plantarum and Bacillus subtilis, on lowering Vibrio, promoting population increase and survival of Brachionus plicatilis. The digestive enzymes activity including α-amylase, lipase and protease, microbial retention and biochemical composition of rotifers were analyzed.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland.
The aim of this study was to elucidate the impact of porcine pancreatic enzymes (Creon pancrelipase) in comparison to microbial-derived alpha amylase (MD amylase) on the small intestine wall structure, mucosal glycogen accumulation, and enterocyte turnover. The impact of enzyme supplementation on the small intestine was explored in 18 pigs with surgically induced exocrine pancreatic insufficiency (EPI). Four healthy pigs served as the control group.
View Article and Find Full Text PDFArch Microbiol
January 2025
Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), Key Laboratory of Mariculture (Ministry of Education), Fisheries College, Ocean University of China, 5 Yushan Road, 266003, Qingdao, P. R. China.
Brine shrimp nauplii are widely used as live food in fish and shellfish aquaculture but they may transmit pathogenic Vibrio to the target species causing significant economic loss. Heavy usage of antibiotics is expensive and environmentally damaging. Use of natural microbes as probiotics for disease management is a more sustainable strategy.
View Article and Find Full Text PDFMicroorganisms
November 2024
Yancheng Academy of Fishery Science, Yancheng 224051, China.
is used as a probiotic in animal and human food supplements. Atmospheric and room temperature plasma (ARTP) systems have frequently been used to screen for effective mutant probiotics. In this study, was treated with ARTP, and high-yielding digestive enzyme mutant strains were obtained by measuring the activities of α-amylase, lipase, and neutral protease.
View Article and Find Full Text PDFAntioxidants (Basel)
December 2024
College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China.
Malondialdehyde (MDA) is a reactive carbonyl compound produced through lipid peroxidation during feed storage, which poses a significant threat to fish health. This study aimed to evaluate the effects of dietary MDA on the growth rate, gastrointestinal health, and muscle quality of striped catfish (). A basal diet (M0) containing 34% crude protein and 10.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!