AI Article Synopsis

Article Abstract

Purpose: The main purpose of this study was to establish bioavailability data in humans for the new (Fe) fortification compound ferrous ammonium phosphate (FAP), which was specially developed for fortification of difficult-to-fortify foods where soluble Fe compounds cannot be used due to their negative impact on product stability.

Methods: A double-blind, randomized clinical trial with cross-over design was conducted to obtain bioavailability data for FAP in humans. In this trial, Fe absorption from FAP-fortified full-cream milk powder was compared to that from ferric pyrophosphate (FPP) and ferrous sulfate. Fe absorption was determined in 38 young women using the erythrocyte incorporation dual stable isotope technique (⁵⁷Fe, ⁵⁸Fe).

Results: Geometric mean Fe absorption from ferrous sulfate, FAP and FPP was 10.4, 7.4 and 3.3 %, respectively. Fe from FAP was significantly better absorbed from milk than Fe from FPP (p < 0.0001). Fe absorption from FAP was significantly lower than Fe absorption from ferrous sulfate, which was used as water-soluble reference compound (p = 0.0002). Absorption ratios of FAP and FPP relative to ferrous sulfate as a measure of relative bioavailability were 0.71 and 0.32, respectively.

Conclusions: The results of the present studies show that replacing FPP with FAP in full-cream milk could significantly improve iron bioavailability.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00394-012-0445-yDOI Listing

Publication Analysis

Top Keywords

ferrous sulfate
20
ferrous ammonium
8
ammonium phosphate
8
iron bioavailability
8
ferric pyrophosphate
8
bioavailability data
8
full-cream milk
8
absorption ferrous
8
fap fpp
8
ferrous
7

Similar Publications

Bariatric surgery and HIV: Joint venture between family, primary care, and HIV physicians.

J Family Med Prim Care

December 2024

Department of HIV and Blood Borne Viruses, Milton Keynes University Hospital, NHS Foundation Trust, Milton Keynes, UK.

We report a case of a 49-year-old female with a history of HIV infection for 12 years. The patient had excellent compliance with antiretroviral medications, raltegravir 400 mg twice daily and truvada once daily for HIV. Over the years, she maintained an undetectable viral load with a CD4+ count >200 cells/μL.

View Article and Find Full Text PDF

Hematite (α-FeO) nanoparticles have been synthesized from waste source of iron which contains a prominent amount of iron (93.2 %) and investigated the effect of low temperature calcination. The two-step synthesis method involved preparing ferrous sulfate through acid leaching process followed by oxidation and calcination at temperatures ranging from 200 to 400 °C to produce the desired α-FeO in nano form.

View Article and Find Full Text PDF

Background: Recent biomedical research has shown the unusual, multisystem effects of coronavirus disease 2019 in humans. One specific sequela of a primary severe acute respiratory syndrome coronavirus 2 infection is the reactivation of latent viruses in various tissues, such as Epstein-Barr virus. Epstein-Barr virus has been identified in many inflammatory gastrointestinal lesions, such as microscopic gastritides and colitides.

View Article and Find Full Text PDF

Absence of gut microbiota alleviates iron overload-induced colitis by modulating ferroptosis in mice.

J Adv Res

December 2024

Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China. Electronic address:

Introduction: Iron overload disrupts gut microbiota and induces ferroptosis, contributing to colitis. However, whether gut microbiota directly drives iron overload-induced colitis and its underlying mechanism remain unclear.

Objectives: The study aimed to explore whether gut microbiota can directly regulate iron overload-induced colitis and its underling mechanism.

View Article and Find Full Text PDF

The treatment of biodegradable plastics through composting has garnered increasing attention. This study aimed to investigate the effects of Biochar FN1 bacteria and ferrous sulfate on nitrogen retention, greenhouse gas emissions, and degradable plastics during composting and to elucidate their synergistic mechanisms on microbial communities. Compared with the control, applying biochar-loaded FN1 bacteria composites combined with Ferrous sulfate (SGC) markedly accelerated organic matter degradation and reduced cumulative CO and NH emissions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!