Background: Simulation of procedural tasks has the potential to bridge the gap between basic skills training outside the operating room (OR) and performance of complex surgical tasks in the OR. This paper provides an overview of procedural virtual reality (VR) simulation currently available on the market and presented in scientific literature for laparoscopy (LS), flexible gastrointestinal endoscopy (FGE), and endovascular surgery (EVS).
Methods: An online survey was sent to companies and research groups selling or developing procedural VR simulators, and a systematic search was done for scientific publications presenting or applying VR simulators to train or assess procedural skills in the PUBMED and SCOPUS databases.
Results: The results of five simulator companies were included in the survey. In the literature review, 116 articles were analyzed (45 on LS, 43 on FGE, 28 on EVS), presenting a total of 23 simulator systems. The companies stated to altogether offer 78 procedural tasks (33 for LS, 12 for FGE, 33 for EVS), of which 17 also were found in the literature review. Although study type and used outcomes vary between the three different fields, approximately 90 % of the studies presented in the retrieved publications for LS found convincing evidence to confirm the validity or added value of procedural VR simulation. This was the case in approximately 75 % for FGE and EVS.
Conclusions: Procedural training using VR simulators has been found to improve clinical performance. There is nevertheless a large amount of simulated procedural tasks that have not been validated. Future research should focus on the optimal use of procedural simulators in the most effective training setups and further investigate the benefits of procedural VR simulation to improve clinical outcome.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00464-012-2503-1 | DOI Listing |
BioData Min
January 2025
Department of Computer Science, Hanyang University, Seoul, Republic of Korea.
Background: Understanding the molecular properties of chemical compounds is essential for identifying potential candidates or ensuring safety in drug discovery. However, exploring the vast chemical space is time-consuming and costly, necessitating the development of time-efficient and cost-effective computational methods. Recent advances in deep learning approaches have offered deeper insights into molecular structures.
View Article and Find Full Text PDFJ Hand Ther
January 2025
Physiotherapeutic Resources Research Laboratory, Department of Physical Therapy, Federal University of São Carlos (UFSCar), São Paulo, Brazil; Department of Rehabilitation Sciences, University of Hartford, West Hartford, CT, USA.
Background: De Quervain's tenosynovitis (QT) is common among individuals performing repetitive manual tasks and significantly affects daily activities due to pain. While traditional treatments often provide limited relief, high-intensity laser therapy (HILT) shows as a potential analgesic resource.
Purpose: This systematic review aimed to evaluate the analgesic effects of HILT in patients with QT.
J Headache Pain
January 2025
Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, Latina, Italy.
Background: Neuroimaging studies have shown that hypothalamic/thalamic nuclei and other distant brain regions belonging to complex cerebral networks are involved in cluster headache (CH). However, the exact relationship between these areas, which may be dependent or independent, remains to be understood. We investigated differences in resting-state functional connectivity (FC) between brain networks and its relationship with the microstructure of the hypothalamus and thalamus in patients with episodic CH outside attacks and healthy controls (HCs).
View Article and Find Full Text PDFJ Biomed Inform
January 2025
Northwest Normal University, College of Computer Science and Engineering, Lanzhou, China. Electronic address:
Background: In the medical context where polypharmacy is increasingly common, accurately predicting drug-drug interactions (DDIs) is necessary for enhancing clinical medication safety and personalized treatment. Despite progress in identifying potential DDIs, a deep understanding of the underlying mechanisms of DDIs remains limited, constraining the rapid development and clinical application of new drugs.
Methods: This study introduces a novel multimodal drug-drug interaction (MMDDI) model based on multi-source drug data and comprehensive feature fusion techniques, aiming to improve the accuracy and depth of DDI prediction.
J Biotechnol
January 2025
Department of Biotechnology and Life Science, Faculty of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei-shi, Tokyo 184-8588, Japan; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu-shi, Tokyo 183-8538, Japan. Electronic address:
Nickel-NTA affinity chromatography is the current standard method for purifying Histagged recombinant proteins. However, this process involves repetitive tasks, can be time-consuming, and reduces protein yield. Here, we present a simple, fast, and handy method for purifying His-tagged proteins using free Ni²⁺.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!