Segmentation of intensity varying and low-contrast structures is an extremely challenging and rewarding task. In computer-aided diagnosis of intracranial aneurysms, segmenting the high-intensity major vessels along with the attached low-contrast aneurysms is essential to the recognition of this lethal vascular disease. It is particularly helpful in performing early and noninvasive diagnosis of intracranial aneurysms using phase contrast magnetic resonance angiographic (PC-MRA) images. The major challenges of developing a PC-MRA-based segmentation method are the significantly varying voxel intensity inside vessels with different flow velocities and the signal loss in the aneurysmal regions where turbulent flows occur. This paper proposes a novel intensity-based algorithm to segment intracranial vessels and the attached aneurysms. The proposed method can handle intensity varying vasculatures and also the low-contrast aneurysmal regions affected by turbulent flows. It is grounded on the use of multirange filters and local variances to extract intensity-based image features for identifying contrast varying vasculatures. The extremely low-intensity region affected by turbulent flows is detected according to the topology of the structure detected by multirange filters and local variances. The proposed method is evaluated using a phantom image volume with an aneurysm and four clinical cases. It achieves 0.80 dice score in the phantom case. In addition, different components of the proposed method-the multirange filters, local variances, and topology-based detection-are evaluated in the comparison between the proposed method and its lower complexity variants. Owing to the analogy between these variants and existing vascular segmentation methods, this comparison also exemplifies the advantage of the proposed method over the existing approaches. It analyzes the weaknesses of these existing approaches and justifies the use of every component involved in the proposed method. It is shown that the proposed method is capable of segmenting blood vessels and the attached aneurysms on PC-MRA images.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TIP.2012.2216274 | DOI Listing |
Appl Neuropsychol Adult
January 2025
Faculty Xavier Institute of Engineering, Mahim, India.
In the fields of engineering, science, technology, and medicine, artificial intelligence (AI) has made significant advancements. In particular, the application of AI techniques in medicine, such as machine learning (ML) and deep learning (DL), is rapidly growing and offers great potential for aiding physicians in the early diagnosis of illnesses. Depression, one of the most prevalent and debilitating mental illnesses, is projected to become the leading cause of disability worldwide by 2040.
View Article and Find Full Text PDFJMIR Form Res
January 2025
School of Psychology, Ulster University, Coleraine, United Kingdom.
Background: Psychologists have developed frameworks to understand many constructs, which have subsequently informed the design of digital mental health interventions (DMHIs) aimed at improving mental health outcomes. The science of happiness is one such domain that holds significant applied importance due to its links to well-being and evidence that happiness can be cultivated through interventions. However, as with many constructs, the unique ways in which individuals experience happiness present major challenges for designing personalized DMHIs.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea.
Epoxides are versatile chemical intermediates that are used in the manufacture of diversified industrial products. For decades, thermochemical conversion has long been employed as the primary synthetic route. However, it has several drawbacks, such as harsh and explosive operating conditions, as well as a significant greenhouse gas emissions problem.
View Article and Find Full Text PDFTraffic Inj Prev
January 2025
School of Civil and Hydraulic Engineering, NingXia University, YinChuan, China.
Objective: This study aims to address the issue of driving safety on highways in the desert region of Northwest China during extreme weather conditions such as sandstorms, with the goal of reducing driver risk. It explores driver behavior under extreme conditions of sandstorms and sand accumulation, proposing safety speed recommendations and warning models for different environments to calculate the optimal warning distance in windy and sandy conditions.
Methods: Natural driving simulation experiments were conducted in windy and sandy environments, collecting driving behavior data from 45 drivers under varying visibility and road conditions with or without sand accumulation.
Clin Infect Dis
January 2025
IQVIA Inc., Falls Church, VA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!