Anti-apoptotic Bcl-2-family members not only neutralize pro-apoptotic proteins but also directly regulate intracellular Ca(2+) signaling from the endoplasmic reticulum (ER), critically controlling cellular health, survival, and death initiation. Furthermore, distinct Bcl-2-family members may selectively regulate inositol 1,4,5-trisphosphate receptor (IP3R): Bcl-2 likely acts as an endogenous inhibitor of the IP3R, preventing pro-apoptotic Ca(2+) transients, while Bcl-XL likely acts as an endogenous IP3R-sensitizing protein promoting pro-survival Ca(2+) oscillations. Furthermore, distinct functional domains in Bcl-2 and Bcl-XL may underlie the divergence in IP3R regulation. The Bcl-2 homology (BH) 4 domain, which targets the central modulatory domain of the IP3R, is likely to be Bcl-2's determining factor. In contrast, the hydrophobic cleft targets the C-terminal Ca(2+)-channel tail and might be more crucial for Bcl-XL's function. Furthermore, one amino acid critically different in the sequence of Bcl-2's and Bcl-XL's BH4 domains underpins their selective effect on Ca(2+) signaling and distinct biological properties of Bcl-2 versus Bcl-XL. This difference is evolutionary conserved across five classes of vertebrates and may represent a fundamental divergence in their biological function. Moreover, these insights open novel avenues to selectively suppress malignant Bcl-2 function in cancer cells by targeting its BH4 domain, while maintaining essential Bcl-XL functions in normal cells. Thus, IP3R-derived molecules that mimic the BH4 domain's binding site on the IP3R may function synergistically with BH3-mimetic molecules selectivity suppressing Bcl-2's proto-oncogenic activity. Finally, a more general role for the BH4 domain on IP3Rs, rather than solely anti-apoptotic, may not be excluded as part of a complex network of molecular interactions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11113329 | PMC |
http://dx.doi.org/10.1007/s00018-012-1118-y | DOI Listing |
Cell Commun Signal
January 2025
Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
Background: Bok is a poorly characterized Bcl-2 protein family member with roles yet to be clearly defined. It is clear, however, that Bok binds strongly to inositol 1,4,5-trisphosphate (IP) receptors (IPRs), which govern the mobilization of Ca from the endoplasmic reticulum, a signaling pathway required for many cellular processes. Also known is that Bok has a highly conserved phosphorylation site for cAMP-dependent protein kinase at serine-8 (Ser-8).
View Article and Find Full Text PDFCell Death Differ
January 2025
Dana Farber Cancer Institute, Boston, MA, USA.
Cellular senescence contributes to a variety of pathologies associated with aging and is implicated as a cellular state in which cancer cells can survive treatment. Reported senolytic drug treatments act through varying molecular mechanisms, but heterogeneous efficacy across the diverse contexts of cellular senescence indicates a need for predictive biomarkers of senolytic activity. Using multi-parametric analyses of commonly reported molecular features of the senescent phenotype, we assayed a variety of models, including malignant and nonmalignant cells, using several triggers of senescence induction and found little univariate predictive power of these traditional senescence markers to identify senolytic drug sensitivity.
View Article and Find Full Text PDFZhongguo Shi Yan Xue Ye Xue Za Zhi
December 2024
Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, Jiangxi Province, China.
Objective: To investigate the effects of Curcumol on the malignant biological characteristics of acute myeloid leukemia (AML) cells and its molecular mechanism, and to provide theoretical and experimental evidence for the anti-leukemia treatment of traditional Chinese medicine.
Methods: After the AML cell lines HL-60 and KG-1 cells were treated different concentrations of with Curcumol. The proliferation activity of cells was detected by CCK-8 method, and the expression changes of apoptotic proteins and PI3K/AKT signaling pathway proteins were detected by Western blot.
Toxicol Res (Camb)
December 2024
Department of Oncology, The Fourth Affiliated Hospital of Guangzhou Medical University, No. 232, Outer Ring East Road, Panyu District, Guangzhou 510000 Guangdong Province, China.
To investigate the role and mechanism of miR-342 and FOXP1 on hepatocellular carcinoma cells. QRT-PCR was applied to determine the expression of miR-342, FOXP1 and MYCBP in normal hepatocyte cell lines (NHC), hepatocellular carcinoma cell lines (HEK-293 T) and human hepatocellular carcinoma cell lines (HepG2, MHCC97-L, Huh7 and SMMC7721). After knockdown or over-expression of miR-342 and FOXP1 in HepG2 cells respectively, cell proliferation and cell viability were measured using MTT assay and colony formation assay.
View Article and Find Full Text PDFNutrients
November 2024
Department of Internal Diseases Propaedeutics and Emergency Medicine, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, 40-055 Katowice, Poland.
Obesity is one of the world's major public health challenges. Its pathogenesis and comorbid metabolic disorders share common mechanisms, such as mitochondrial or endoplasmic reticulum dysfunction or oxidative stress, gut dysbiosis, chronic inflammation and altered autophagy. Numerous pro-autophagy dietary interventions are being investigated for their potential obesity-preventing or therapeutic effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!