Evidence of a role for fibrocyte and keratinocyte-like cells in the formation of hypertrophic scars.

J Burn Care Res

Division of Plastic Surgery, Department of Surgery, University of British Columbia, Vancouver, Canada.

Published: September 2013

Burn injuries affect millions of people every year, and dermal fibrosis is a common complication for the victims. This disfigurement has functional and cosmetic consequences and many research groups have made it the focus of their work to understand the mechanisms that underlie its development. Although significant progress has been made in wound-healing processes, the complexity of events involved makes it very difficult to come up with a single strategy to prevent this devastating fibrotic condition. Inflammation is considered one predisposing factor, although this phase is a necessary aspect of the wound-healing process. Inflammation, driven by infiltrated immune cells, begins minutes after the burn injury and is the prevalent phase of wound healing in the early stages. Accompanying the inflammatory infiltrate, there is evidence that subpopulations of bone marrow-derived cells are also present. These populations include fibrocytes and keratinocyte-like cells, derivatives of CD14 monocytes, a component of the peripheral blood mononuclear cell infiltrate. There is evidence that these cells contribute to regeneration and repair of the wound site, but it is interesting to note that there are also reports that these cells can have adverse effects and may contribute to the development of dermal fibrosis. In this article, the authors present a review of the origin and transdifferentiation of these cells from bone marrow stem cells, the environments that direct this transdifferentiation, and evidence to support their role in fibrosis, as well as potential avenues for therapeutics to control their fibrotic effects.

Download full-text PDF

Source
http://dx.doi.org/10.1097/BCR.0b013e318254d1f9DOI Listing

Publication Analysis

Top Keywords

cells
8
keratinocyte-like cells
8
dermal fibrosis
8
infiltrate evidence
8
evidence
4
evidence role
4
role fibrocyte
4
fibrocyte keratinocyte-like
4
cells formation
4
formation hypertrophic
4

Similar Publications

Discovery of noncovalent diaminopyrimidine-based Inhibitors for glioblastoma via a dual FAK/DNA targeting strategy.

Eur J Med Chem

January 2025

School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China. Electronic address:

Temozolomide, a widely used alkylating agent for glioblastoma treatment, faces significant challenges due to the development of resistance, which severely impacts patient survival. This underscores the urgent need for novel strategies to overcome this barrier. Focal adhesion kinase (FAK), an intracellular non-receptor tyrosine kinase, is highly expressed in glioblastoma cells and has been identified as a promising therapeutic target for anti-glioblastoma drug development.

View Article and Find Full Text PDF

Hypothesis for Molecular Evolution in the Pre-Cellular Stage of the Origin of Life.

Wiley Interdiscip Rev RNA

January 2025

Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, People's Republic of China.

Life was originated from inorganic world and had experienced a long period of evolution in about 3.8 billion years. The time for emergence of the pioneer creations on Earth is debatable nowadays, and how the scenario for the prebiotic molecular interactions is still mysterious.

View Article and Find Full Text PDF

Dissociation of hydrogen and formation of water at the (010) and (111) surfaces of orthorhombic FeNbO4.

Chemphyschem

January 2025

University of Leeds, School of Chemistry, Woodhouse Lane, LS2 9JT, Leeds, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.

The orthorhombic structure of FeNbO4, where the Fe and Nb cations are distributed randomly over the octahedral 4c sites, has shown excellent promise as an anode material in solid oxide fuel cells. We have used DFT+U-D2 calculations to explore the adsorption and dissociation of H2 molecules and the formation reaction of water at the (010) and (111) surfaces. Simulations of the surface properties confirmed that the bandgaps are significantly reduced compared to the bulk material.

View Article and Find Full Text PDF

The secrets of the Tübingen Castle kitchen: Friedrich Miescher and the discovery of nuclein, the cornerstone of DNA.

Gac Med Mex

January 2025

Departamento de Anatomía Patológica, Fundación Clínica Médica Sur; Departamento de Biología Celular y Tisular, Escuela de Medicina, Universidad Panamericana. Mexico City, Mexico.

In 1869, Friedrich Miescher, born in Basel, Switzerland, discovered a previously unknown phosphorus-rich substance in the nuclei of pus cells. Conducting his research in a laboratory set up in the kitchen of Tübingen's medieval castle in Germany, and under the guidance by Professor Felix Hoppe-Seyler, Miescher primarily focused on the composition of cell nuclei. He obtained nuclear material by washing pus cells from surgical bandages provided by a nearby hospital.

View Article and Find Full Text PDF

Chemerin is a new sex-specific target in aortic stenosis concomitant with diabetes regulated by the aldosterone/mineralocorticoid receptor axis.

Am J Physiol Heart Circ Physiol

January 2025

Cardiovascular Translational Research. Navarrabiomed (Fundación Miguel Servet), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain.

Diabetes mellitus (DM) increases the risk of aortic stenosis (AS) and worsens its pathophysiology in a sex-specific manner. Aldosterone/mineralocorticoid receptor (Aldo/MR) pathway participates in early stages of AS and in other diabetic-related cardiovascular complications. We aim to identify new sex-specific Aldo/MR targets in AS complicated with DM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!