Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this study, Pt/Fe/ZSM5 catalysts were applied to oxidation of ammonia, where the catalysts showed good low-temperature activity (≤ 200°C) for converting ammonia into nitrogen. With 1.5% Pt/0.5% Fe/ZSM5 catalyst, we could obtain 81% NH(3) conversion and 93% N(2) selectivity at 175°C at the short contact-time of w/f=0.00012 g min/mL. Through the characterization studies using high-resolution transmission electron microscopy (HRTEM) and X-ray spectroscopies (XRD, XPS), we could find that the active species was collaborating Pt/Fe species, which structure and activity were largely influenced by support material - in a positive way by ZSM5, rather than by Al(2)O(3) and SiO(2). When using ZSM5 as the support material, Pt was highly dispersed exclusively on the Fe oxide, and the valence state and dispersion of Pt changed according to Fe loading amount.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2012.08.026 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!