Reaction of CuI with bis(phenylthio)propane in a 1:1 ratio yields the two-dimensional coordination polymer [{Cu(μ(2)-I)(2)Cu}{μ-PhS(CH(2))(3)SPh}(2)](n) (1). The 2D-sheet structure of 1 is built up by dimeric Cu(2)I(2) units, which are connected via four bridging 1,3-bis(phenylthio)propane ligands. In contrast, treatment of 2 equiv of CuI with 1,3-bis(phenylthio)propane in MeCN solution affords in a self-assembly reaction the strongly luminescent metal-organic 2D-coordination polymer [Cu(4)I(4){μ-PhS(CH(2))(3)Ph}(2)](n) (2), in which cubane-like Cu(4)(μ(3)-I)(4) cluster units are linked by the dithioether ligands. The crystallographically characterized one-dimensional (1D) compound [{Cu(μ(2)-Br)(2)Cu}{μ-PhS(CH(2))(3)SPh}(2)](n) (3) is obtained using CuBr. The outcome of the reaction of PhS(CH(2))(5)SPh with CuI also depends of the metal-to-ligand ratio employed. Mixing CuI and the dithioether in a 2:1 ratio results in formation of [Cu(4)I(4){μ-PhS(CH(2))(5)Ph}(2)](n) (4) in which cubane-like Cu(4)(μ(3)-I)(4) clusters are linked by the bridging dithioether ligand giving rise to a 1D necklace structure. A ribbon-like 1D-polymer with composition [{Cu(μ(2)-I)(2)Cu}{μ-PhS(CH(2))(5)SPh}(2)](n) (5), incorporating rhomboid Cu(2)I(2) units, is produced upon treatment of CuI with 1,5-bis(phenylthio)pentane in a 1:1 ratio. Reaction of CuBr with PhS(CH(2))(5)SPh produces the isomorphous 1D-compound [{Cu(μ(2)-Br)(2)Cu}{μ-PhS(CH(2))(5)SPh}(2)](n) (6). Strongly luminescent [Cu(4)I(4){μ-p-TolS(CH(2))(5)STol-p}(2)](n) (7) is obtained after mixing 1,5-bis(p-tolylthio)pentane with CuI in a 1:2 ratio, and the 2D-polymer [{Cu(μ(2)-I)(2)Cu}(2){μ-p-TolS(CH(2))(5)STol-p}(2)](n) (8) results from reaction in a 1:1 metal-to-ligand ratio. Under the same reaction conditions, 1D-polymeric [{Cu(μ(2)-Br)(2)Cu}{μ-p-TolS(CH(2))(5)STol-p}(2)](n) (9) is formed using CuBr. This study reveals that the structure of the self-assembly process between CuX and ArS(CH(2))(m)SAr ligands is hard to predict. The solid-state luminescence spectra at 298 and 77 K of 2 and 4 exhibit very strong emissions around 535 and 560 nm, respectively, whereas those for 1 and 5 display weaker ones at about 450 nm. The emission lifetimes are longer for the longer wavelength emissions (>1.0 μs arising from the cubane species) and shorter for the shorter wavelength ones (<1.4 μs arising from the rhomboid units). The Br-containing species are found to be weakly fluorescent.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic301385u | DOI Listing |
Int J Mol Sci
November 2024
Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland.
Dalton Trans
November 2024
Ruđer Bošković Institute, Bijenička c. 54, HR-10000 Zagreb, Croatia.
This publication describes monodentate phosphine and oxazoline ligands attached to an amino acid ester and the application of their supramolecularly assembled rhodium(I) or iridium(I) complexes in asymmetric catalysis. The major feature of these complexes is the transmission of chirality from distant hydrogen bonded amino acids to the prochiral catalytic metal center ("backdoor induction"). The generated homoleptic and heteroleptic rhodium(I) or iridium(I) precatalysts were studied by NMR, UV-VIS and CD spectroscopy as well as X-ray single crystal diffraction.
View Article and Find Full Text PDFMikrochim Acta
November 2024
Department of Chemistry, Netaji Subhas University of Technology, Dwarka Sector-3, Dwarka, Delhi, 110078, India.
Metal nanoparticles and nanoclusters are pivotal in nanomaterial science, each offering unique properties for diverse applications. Nanoclusters, typically smaller than 2 nm, exhibit distinct optical and electronic characteristics due to quantum confinement, resulting in fluorescence emission. In contrast, metal nanoparticles, sized between 2 and 100 nm, exhibit absorption spectra.
View Article and Find Full Text PDFPLoS One
August 2024
Chemistry Department, College of Science, Jouf University, Sakaka, Saudi Arabia.
Research in the synthesis of Schiff base ligands and their metal complexes using olive leaf extracts as a green reducing agent is an exciting area of study. In this research, a Schiff base ligand is created by combining 1-hydroxy-2-naphthaldehyde and amino-N-(4,6-dimethylpyrimidin-2-yl)-4-benzenesulfonamide. The synthetic Schiff base is then utilized for the production of a Cd(II) nano complex for the first time with olive leaf extracts serving as the green reducing agent.
View Article and Find Full Text PDFACS Appl Mater Interfaces
June 2024
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
Tailor-made unsaturated coordination of metal ions or organic linkers in zeolitic imidazole frameworks (ZIFs) has great potential in tuning the ZIFs' properties and reactivity for their applications. Taking advantage of the solid-state thermal (SST) method as a facile and eco-friendly synthesis method, the rational coordination of metal ions with imidazole ligands in ZIF-67 through the SST method is investigated. The rational precursor ratio (metal-to-ligand source) under the solvent-free SST method emerges as a perfect strategy to tune the coordinately unsaturated sites within the ZIF-67 frameworks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!