A promising electrocatalyst prototype of low Pt mole fraction, intermetallic nanoparticles of Cu(3)Pt, has been prepared using a simple impregnation-reduction method, followed by a post heat-treatment. Two dealloying methods (electrochemical and chemical) were implemented to control the atomic-level morphology and improve performance for the oxygen reduction reaction (ORR). The morphology and elemental composition of the dealloyed nanoparticles were characterized at angstrom resolution using an aberration-corrected scanning transmission electron microscope equipped with an electron energy loss spectrometer. We found that the electrochemical dealloying method led to the formation of a thin Pt skin of ca. 1 nm in thickness with an ordered Cu(3)Pt core structure, while chemical leaching gave rise to a "spongy" structure with no ordered structure being preserved. A three-dimensional tomographic reconstruction indicated that numerous voids were formed in the chemically dealloyed nanoparticles. Both dealloying methods yielded enhanced specific and mass activities toward the ORR and higher stability relative to Pt/C. The spongy nanoparticles exhibited better mass activity with a slightly lower specific activity than the electrochemically dealloyed nanoparticles after 50 potential cycles. In both cases, the mass activity was still enhanced after 5000 potential cycles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nl302404g | DOI Listing |
ACS Nano
January 2025
Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061, P. R. China.
To achieve a long cycle life and high-capacity performance for Li-O batteries, it is critical to rationally modulate the formation and decomposition pathway of the discharge product LiO. Herein, we designed a highly efficient catalyst containing dual catalytic active sites of Pt single atoms (Pt) paired with high-entropy alloy (HEA) nanoparticles for oxygen reduction reaction (ORR) in Li-O batteries. HEA is designed with a moderate d-band center to enhance the surface adsorbed LiO intermediate (LiO(ads)), while Pt active sites exhibit weak adsorption energy and promote the soluble LiO pathway (LiO(sol)).
View Article and Find Full Text PDFNat Commun
December 2024
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
Nanoporous metals have unique potentials for energy applications with a high surface area despite the percolating structure. Yet, a highly corrosive environment is required for the synthesis of porous metals with conventional dealloying methods, limiting the large-scale fabrication of porous structures for reactive metals. In this study, we synthesize a highly reactive Mg nanoporous system through a facile organic solution-based approach without any harsh etching.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Institute for Safflower Industry Research, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization (Ministry of Education), School of Pharmacy, Shihezi University, Shihezi, 832003, China.
Prostate specific antigen (PSA) is widely used in liquid biopsy of prostate cancer (PCa) but still faces challenges due to the poor specificity. Herein, this study reports a double-SERS satellite immunoassay, made of an Au-Ag dealloyed intra-nanogap nanoflower (Au-Ag DINF) with strong SERS signals and Au magnetic nanoparticles (AuMNPs) with magnetic capture and SERS amplification, for sensing multiple PSA (free PSA (fPSA), complexed PSA (cPSA) and [-2]proPSA (p2PSA)) toward potential PCa screening. Unlike the previous studies focus on the tPSA and fPSA/tPSA ratio (f/t PSA%), this work introduces a multiple PSA-mediated Prostate Health Index (PHI) assay with significantly increased the predictive accuracy and specificity of PCa, especially the patients with a tPSA level in the "diagnostic gray zone".
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.
The scalable synthesis of non-precious nanoporous metals, such as nanoporous zinc (NP-Zn), nanoporous iron (NP-Fe), and nanoporous aluminum (NP-Al), is crucial for large-scale production of hydrogen through the reaction between non-precious metals and water. The fabrication of bulk NP-Zn by selective removal of Al from sub-centimeter-sized arc-melted Zn-Al parent alloys through free corrosion dealloying usually takes a few days. Here, we demonstrate that this free corrosion dealloying process can be reduced from a few days to 4 min simply using micrometer-sized Zn-Al powder particles with nominal composition ZnAl atomic % produced by gas atomization as the parent alloy.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!