Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The emergence of third-generation photovoltaics based on Si relies on tunable bandgap materials with embedded nanocrystalline Si. One of the most promising approaches is based on the mixed-phase Si1 - xCx. We have investigated the light absorption controllability of nanocrystalline Si-embedded Si1 - xCx produced by thermal annealing of the Si-rich Si1 - xCx and composition-modulated superlattice structure. In addition, stoichiometric SiC was also investigated to comparatively analyze the characteristic differences. As a result, it was found that stoichiometric changes of the matrix material and incorporation of oxygen play key roles in light absorption controllability. Based on the results of this work and literature, a design strategy of nanocrystalline Si-embedded absorber materials for third-generation photovoltaics is discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3493276 | PMC |
http://dx.doi.org/10.1186/1556-276X-7-503 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!