Candida lusitaniae is an emerging fungal pathogen that infects immunocompromised patients including HIV/AIDS, cancer, and neonatal pediatric patients. Though less prevalent than other Candida species, C. lusitaniae is unique in its ability to develop resistance to amphotericin B. We investigated the role of the calcium-activated protein phosphatase calcineurin in several virulence attributes of C. lusitaniae including pseudohyphal growth, serum survival, and growth at 37°C. We found that calcineurin and Crz1, a C. albicans Crz1 homolog acting as a downstream target of calcineurin, are required for C. lusitaniae pseudohyphal growth, a process for which the underlying mechanism remains largely unknown in C. lusitaniae but hyphal growth is fundamental to C. albicans virulence. We demonstrate that calcineurin is required for cell wall integrity, ER stress response, optimal growth in serum, virulence in a murine systemic infection model, and antifungal drug tolerance in C. lusitaniae. To further examine the potential of targeting the calcineurin signaling cascade for antifungal drug development, we examined the activity of a calcineurin inhibitor FK506 in combination with caspofungin against echinocandin resistant C. lusitaniae clinical isolates. Broth microdilution and drug disk diffusion assays demonstrate that FK506 has synergistic fungicidal activity with caspofungin against echinocandin resistant isolates. Our findings reveal that pseudohyphal growth is controlled by the calcineurin signaling cascade, and highlight the potential use of calcineurin inhibitors and caspofungin for emerging drug-resistant C. lusitaniae infections.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3432075PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0044192PLOS

Publication Analysis

Top Keywords

pseudohyphal growth
16
calcineurin required
12
calcineurin
9
lusitaniae
9
candida lusitaniae
8
growth serum
8
antifungal drug
8
calcineurin signaling
8
signaling cascade
8
caspofungin echinocandin
8

Similar Publications

Molecular recognition of the promoter DNA signature sequence by Hms1p.

Int J Biol Macromol

January 2025

MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China. Electronic address:

Transcriptional regulation of sterol biosynthetic genes is mediated by conserved sterol-regulatory element binding proteins (SREBPs) in human pathogenic fungi, however, its homolog in S. cerevisiae regulate filamentous growth during stress conditions. These pseudohyphal growths might be associated with the expression of MEP2 gene in response to ammonium limitation.

View Article and Find Full Text PDF

Sphingolipids are vital membrane components in in mammalian cells, plants, and various microbes. We aimed to explore and exploit the sphingolipid biosynthesis pathways in an oleaginous and dimorphic yeast Yarrowia lipolytica by constructing and characterizing mutant strains with specific gene deletions and integrating exogenous genes to enhance the production of long-chain bases (LCBs) and glucosylceramides (GlcCers). To block the fungal/plant-specific phytosphingosine (PHS) pathway, we deleted the SUR2 gene encoding a sphinganine C4-hydroxylase, resulting in a remarkably elevated secretory production of dihydrosphingosine (DHS) and sphingosine (So) without acetylation.

View Article and Find Full Text PDF

We combine an off-lattice agent-based mathematical model and experimentation to explore filamentous growth of a yeast colony. Under environmental stress, Saccharomyces cerevisiae yeast cells can transition from a bipolar (sated) to unipolar (pseudohyphal) budding mechanism, where cells elongate and bud end-to-end. This budding asymmetry yields spatially non-uniform growth, where filaments extend away from the colony centre, foraging for food.

View Article and Find Full Text PDF

Knock-out of the major regulator Flo8 in Komagataella phaffii results in unique host strain performance for methanol-free recombinant protein production.

N Biotechnol

December 2024

CD-Laboratory for Growth-decoupled Protein Production in Yeast at Department of Biotechnology, BOKU University, Vienna, Austria; BOKU University, Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, Vienna, Austria; Austrian Centre of Industrial Biotechnology (ACIB GmbH), Vienna, Austria. Electronic address:

Flo8 is a main transcriptional regulator of flocculation and pseudohyphal growth in yeast. Disruption of FLO8 in the popular recombinant protein production host Komagataella phaffii (Pichia pastoris) prevents pseudohyphal growth and reduces cell-to-surface adherence, making the mutant an interesting platform for research and industry. However, knowledge of the physiological impact of the mutation remained scarce.

View Article and Find Full Text PDF

Analysis of secondary metabolites and morphology in Streptomyces rimosus microparticle-enhanced cultivation (MPEC) at various initial organic nitrogen concentrations.

Microb Cell Fact

September 2024

Faculty of Process and Environmental Engineering, Department of Bioprocess Engineering, Lodz University of Technology, ul. Wólczańska 213, Łódź, 93-005, Poland.

The influence of talc microparticles on metabolism and morphology of S. rimosus at various initial organic nitrogen concentrations was investigated. The shake flask cultivations were conducted in the media with yeast extract (nitrogen source) concentration equal to 1 g YE L and 20 g YE L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!