fmtA encodes a low-affinity penicillin binding protein in Staphylococcus aureus. It is part of the core cell wall stimulon and is involved in methicillin resistance in S. aureus. Here, we report that the transcription factor, SarA, a pleiotropic regulator of virulence genes in S. aureus, regulates the expression of fmtA. In vitro binding studies with purified SarA revealed that it binds to specific sites within the 541-bp promoter region of fmtA. Mutation of a key residue of the regulatory activity of SarA (Arg90) abolished binding of SarA to the fmtA promoter, suggesting that SarA binds specifically to the fmtA promoter region. In vivo analysis of the fmtA promoter using a lux operon reporter fusion show high level expression following oxacillin induction, which was abrogated in a sarA mutant strain. These data suggest that SarA is essential for the induction of fmtA expression by cell wall-specific antibiotics. Further, in vitro transcription studies show that SarA enhances fmtA transcription and suggest that regulation of fmtA could be via a SigA-dependent mechanism. Overall, our results show that SarA plays a direct role in the regulation of fmtA expression via binding to the fmtA promoter.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3431356PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0043998PLOS

Publication Analysis

Top Keywords

fmta promoter
16
fmta
12
sara
10
staphylococcus aureus
8
sara fmta
8
promoter region
8
fmta expression
8
regulation fmta
8
promoter
5
aureus methicillin-resistance
4

Similar Publications

fmtA encodes a low-affinity penicillin binding protein in Staphylococcus aureus. It is part of the core cell wall stimulon and is involved in methicillin resistance in S. aureus.

View Article and Find Full Text PDF

Transcriptional profiling of Staphylococcus aureus treated with cell wall-active antibiotics identified the 2-component system, VraSR, as one of the key players in response to antibiotic stress. Although it has been shown that a number of genes are regulated by the VraSR system, it has not been shown which genes are under direct VraSR regulation and which genes are not. In this study, chromatin immunoprecipitation techniques were used to identify the genes which are regulated by the direct interaction of VraR with their promoter regions.

View Article and Find Full Text PDF

Staphylococcus aureus produces biofilm and this mode of colonization facilitates infections that are often difficult to treat and engender high morbidity and mortality. We have exploited bacteriophage Mu transposition methods to create an insertional mutant library in a highly biofilm-forming S. aureus clinical isolate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!