Background: The lipopeptide antibiotic, daptomycin (DAP) interacts with the bacterial cell membrane (CM). Development of DAP resistance during therapy in a clinical strain of Enterococcus faecalis was associated with mutations in genes encoding enzymes involved in cell envelope homeostasis and phospholipid metabolism. Here we characterized changes in CM phospholipid profiles associated with development of DAP resistance in clinical enterococcal strains.

Methodology: Using two clinical strain-pairs of DAP-susceptible and DAP-resistant E. faecalis (S613 vs. R712) and E. faecium (S447 vs. R446) recovered before and after DAP therapy, we compared four distinct CM profiles: phospholipid content, fatty acid composition, membrane fluidity and capacity to be permeabilized and/or depolarized by DAP. Additionally, we characterized the cell envelope of the E. faecium strain-pair by transmission electron microscopy and determined the relative cell surface charge of both strain-pairs.

Principal Findings: Both E. faecalis and E. faecium mainly contained four major CM PLs: phosphatidylglycerol (PG), cardiolipin, lysyl-phosphatidylglycerol (L-PG) and glycerolphospho-diglycodiacylglycerol (GP-DGDAG). In addition, E. faecalis CMs (but not E. faecium) also contained: i) phosphatidic acid; and ii) two other unknown species of amino-containing PLs. Development of DAP resistance in both enterococcal species was associated with a significant decrease in CM fluidity and PG content, with a concomitant increase in GP-DGDAG. The strain-pairs did not differ in their outer CM translocation (flipping) of amino-containing PLs. Fatty acid content did not change in the E. faecalis strain-pair, whereas a significant decrease in unsaturated fatty acids was observed in the DAP-resistant E. faecium isolate R446 (vs S447). Resistance to DAP in E. faecium was associated with distinct structural alterations of the cell envelope and cell wall thickening, as well as a decreased ability of DAP to depolarize and permeabilize the CM.

Conclusion: Distinct alterations in PL content and fatty acid composition are associated with development of enterococcal DAP resistance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3428275PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0043958PLOS

Publication Analysis

Top Keywords

dap resistance
16
development dap
12
cell envelope
12
fatty acid
12
dap
9
associated distinct
8
distinct alterations
8
alterations cell
8
cell membrane
8
phospholipid content
8

Similar Publications

gene mutation through CRISPR RNA-guided base editing weakens bacterial virulence and immune evasion.

Virulence

December 2025

Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.

The resistance of commonly used clinical antibiotics, such as daptomycin (DAP), has become increasingly serious in the fight against () infection. It is essential to explore key pathogenicity-driven genes/proteins in bacterial infection and antibiotics resistance, which contributes to develop novel therapeutic strategies against infections. The gene of , encoding 5'-nucleotidase (NT5), is nearly unknown for its function in drug resistance and bacterial infection.

View Article and Find Full Text PDF

Background: Metastatic castration-resistant prostate cancer (mCRPC) has a poor prognosis, necessitating the investigation of novel treatments and targets. This study evaluated JNJ-70218902 (JNJ-902), a T-cell redirector targeting transmembrane protein with epidermal growth factor-like and 2 follistatin-like domains 2 (TMEFF2) and cluster of differentiation 3, in mCRPC.

Patients And Methods: Patients who had measurable/evaluable mCRPC after at least one novel androgen receptor-targeted therapy or chemotherapy were eligible.

View Article and Find Full Text PDF

ZmHB53, a Maize Homeodomain-Leucine Zipper I Transcription Factor Family Gene, Contributes to Abscisic Acid Sensitivity and Confers Seedling Drought Tolerance by Promoting the Activity of ZmPYL4.

Plant Cell Environ

January 2025

State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Germplasm Resources in North China, Ministry of Education, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China.

Plant-specific homeodomain-leucine zipper I (HD-Zip I) transcription factors (TFs) crucially regulate plant drought tolerance. However, their specific roles in maize (Zea mays L.) regulating drought tolerance remain largely unreported.

View Article and Find Full Text PDF

Polymeric Anti-Antibiotic Microparticles to Prevent Antibiotic Resistance Evolution.

Small

January 2025

Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.

Vancomycin (VAN) and daptomycin (DAP) are among the last-resort antibiotics for treating multidrug-resistant Gram-positive bacterial infections. They are administered intravenously (IV); however, ≈5 - 10% of the total IV dose is released in the gastrointestinal (GI) tract via biliary excretion, driving resistance emergence in commensal Enterococcus faecium (E. faecium) populations.

View Article and Find Full Text PDF

VvATG18a participates in grape resistance to gray mold induced by BR signaling pathway.

Int J Biol Macromol

January 2025

College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China. Electronic address:

Autophagy plays an important role in responding to necrotrophic pathogens and plant signal hormones. Brassinosteroids (BRs) are a class of natural steroidal phytohormones that effectively regulated the disease resistance responses in grape. However, the molecular mechanism of BR-autophagy networks responsible for activation of host defense against gray mold remained to be elucidated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!