Background: REST is abundantly expressed in mouse embryonic stem cells (ESCs). Many genome-wide analyses have found REST to be an integral part of the ESC pluripotency network. However, experimental systems have produced contradictory findings: (1) REST is required for the maintenance of ESC pluripotency and loss of REST causes increased expression of differentiation markers, (2) REST is not required for the maintenance of ESC pluripotency and loss of REST does not change expression of differentiation markers, and (3) REST is not required for the maintenance of ESC pluripotency but loss of REST causes decreased expression of differentiation markers. These reports highlight gaps in our knowledge of the ESC network.

Methods: Employing biochemical and genome-wide analyses of various culture conditions and ESC lines, we have attempted to resolve some of the discrepancies in the literature.

Results: We show that Rest+/- and Rest-/- AB-1 mutant ESCs, which did not exhibit a role of REST in ESC pluripotency when cultured in the presence of feeder cells, did show impaired self-renewal when compared with the parental cells under feeder-free culture conditions, but only in early passage cells. In late passage cells, both Rest+/- and Rest-/- AB-1 ESCs restored pluripotency, suggesting a passage and culture condition-dependent response. Genome-wide analysis followed by biochemical validation supported this response and further indicated that the restoration of pluripotency was associated by increased expression of the ESC pluripotency factors. E14Tg2a.4 ESCs with REST-knockdown, which earlier showed a REST-dependent pluripotency when cultured under feeder-free conditions, as well as Rest-/- AB-1 ESCs, showed no REST-dependent pluripotency when cultured in the presence of either feeder cells or laminin, indicating that extracellular matrix components can rescue REST's role in ESC pluripotency.

Conclusions: REST regulates ESC pluripotency in culture condition- and ESC line-dependent fashion and ESC pluripotency needs to be evaluated in a context dependent manner.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3429488PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0043659PLOS

Publication Analysis

Top Keywords

esc pluripotency
36
esc
13
pluripotency
13
rest required
12
required maintenance
12
maintenance esc
12
pluripotency loss
12
loss rest
12
expression differentiation
12
differentiation markers
12

Similar Publications

The mechanism by which DNA-damage affects self-renewal and pluripotency remains unclear. DNA damage and repair mechanisms have been largely elucidated in mutated cancer cells or simple eukaryotes, making valid interpretations on early development difficult. Here we show the impact of ionizing irradiation on the maintenance and early differentiation of mouse embryonic stem cells (ESCs).

View Article and Find Full Text PDF

MTFAP: a comprehensive platform for predicting and analyzing master transcription factors.

Sci Rep

December 2024

Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.

Master transcription factors (MTFs) activate gene expression in pluripotent embryonic stem cells (ESCs) by binding to enhancers and super-enhancers, which precisely control ESC fate. Compelling evidence reveals a strong correlation between the operation of MTFs and the initiation and progression of cancer. Nevertheless, the challenge of identifying MTFs imposes a barrier for researchers.

View Article and Find Full Text PDF

Interplay of Chromatin Remodeling BAF Complexes in Mouse Embryonic and Epiblast Stem Cell Conversion and Maintenance.

J Biol Chem

December 2024

Department of Clinical Pathobiology and Immunological Testing, School of Medical Laboratory, Qilu Medical University, Zibo 255300, China.

Mouse embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs) are pluripotent stem cells derived from pre-implantation and post-implantation embryos, respectively. These cells are capable of interconversion through manipulation of key transcription factors and signaling pathways. While BAF chromatin remodeling complexes are known to play crucial roles in ESC self-renewal and pluripotency, their roles in EpiSCs and their interconversion with ESCs remain unclear.

View Article and Find Full Text PDF

Induced Pluripotent Stem Cells in Birds: Opportunities and Challenges for Science and Agriculture.

Vet Sci

December 2024

Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou 225009, China.

The only cells in an organism that could do any other sort of cell until 2006 (except sperm or egg) were known as embryonic stem cells, ESC [...

View Article and Find Full Text PDF

The nervous system's regenerative potential has sparked interest in exploring novel approaches to generate Schwann cell-like cells (SC-LCs) from chicken blastoderm (B)-derived embryonic stem cells (B-ESCs). This study investigates the hypothesis that specific growth factors, when used during ex-ovo culture, can induce the differentiation of chicken B-ESCs into cells resembling Schwann cells (SCs). Blastodermal cells (BCs) were isolated from in vivo-fertilized eggs at stage X followed by 14-d proliferative culture (PRC) of B-ESCs and subsequent 14-d glial/neurolemmogenic differentiation culture (DFC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!