The purpose of this study was to validate the dose prescription defined to the gross tumor volume (GTV) 3D and 4D dose distributions of stereotactic radiotherapy for lung cancer. Treatment plans for 94 patients were generated based on computed tomography (CT) under free breathing. A uniform margin of 8 mm was added to the internal target volume (ITV) to generate the planning target volume (PTV). A leaf margin of 2 mm was added to the PTV. The prescription dose was defined such that 99% of the GTV should receive 100% of the dose using the Monte Carlo calculation (iPlan RT Dose(TM)) for 6-MV photon beams. The 3D dose distribution was determined using CT under free breathing. The 4D dose distribution plan was recalculated to investigate the effect of tumor motion using the same monitor units as those used for the 3D dose distribution plan. D99 (99% of the GTV) in the 4D plan was defined as the average D99 in each of the four breathing phases (0%, 25%, 50% and 75%). The dose difference between maximum and minimum at D99 of the GTV in 4D calculations was 0.6 ± 1.0% (range 0.2-4.6%). The average D99 of the GTV from 4D calculations in most patients was almost 100% (99.8 ± 1.0%). No significant difference was found in dose to the GTV between 3D and 4D dose calculations (P = 0.67). This study supports the clinical acceptability of treatment planning based on the dose prescription defined to the GTV.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3534263 | PMC |
http://dx.doi.org/10.1093/jrr/rrs054 | DOI Listing |
Cytotherapy
November 2024
Institute of Immunology and Immunotherapy, College of Medicine and Health, University of Birmingham, Birmingham, UK. Electronic address:
Background Aims: Extracellular vesicles (EVs) have gained traction as potential cell-free therapeutic candidates. Development of purification methods that are scalable and robust is a major focus of EV research. Yet there is still little in the literature that evaluates purification methods against potency of the EV product.
View Article and Find Full Text PDFInt J Pharm
January 2025
Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ, 08854, USA; Center for Structured Organic Particulate Systems (C-SOPS), Cranbury, NJ, 08512, USA.
This study used Raman and near-infrared (NIR) spectroscopy to monitor small real-time changes in powder blends and tablets in low-dose pharmaceutical formulations. The research aims to enhance process analytical technology (PAT) in pharmaceutical manufacturing, ensuring high-quality and uniform products with applications to produce drugs with narrow therapeutic indices (NTI). The study utilizes Raman and NIR spatially resolved spectroscopy (SRS) techniques to monitor a moderate cohesive material's active pharmaceutical ingredient (API) concentrations during manufacturing.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China.
Hexafluoropropylene oxide trimer acid (HFPO-TA, CF(CFOCF(CF))COOH) is widely used as an alternative to perfluorooctanoic acid (PFOA), but whether it is a safe alternative requires further evaluation. In this study, male mice were exposed to three dosages (0.56, 2.
View Article and Find Full Text PDFJ Nucl Med
January 2025
Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland; and.
The treatment regimen for [Lu]Lu-prostate-specific membrane antigen (PSMA) 617 therapy follows that of chemotherapy: 6 administrations of a fixed activity, each separated by 6 wk. Mathematic modeling can be used to test the hypothesis that the current treatment regimen for a radiopharmaceutical modality is suboptimal. A mathematic model was developed to describe tumor growth during [Lu]Lu-PSMA therapy.
View Article and Find Full Text PDFPhys Med Biol
January 2025
Department of Accelerator and Medical Physics, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, JAPAN.
The tumor microenvironment characterized by heterogeneously organized vasculatures causes intra-tumoral heterogeneity of oxygen partial pressure at the cellular level, which cannot be measured by current imaging techniques. The intra-tumoral cellular heterogeneity may lead to a reduction of therapeutic effects of radiation. The purpose of this study was to investigate the effects of the heterogeneity on biological effectiveness of H-, He-, C-, O-, and Ne-ion beams for different oxygenation levels, prescribed dose levels, and cell types.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!