Background: Pseudogenes have long been considered as nonfunctional genomic sequences. However, recent evidence suggests that many of them might have some form of biological activity, and the possibility of functionality has increased interest in their accurate annotation and integration with functional genomics data.
Results: As part of the GENCODE annotation of the human genome, we present the first genome-wide pseudogene assignment for protein-coding genes, based on both large-scale manual annotation and in silico pipelines. A key aspect of this coupled approach is that it allows us to identify pseudogenes in an unbiased fashion as well as untangle complex events through manual evaluation. We integrate the pseudogene annotations with the extensive ENCODE functional genomics information. In particular, we determine the expression level, transcription-factor and RNA polymerase II binding, and chromatin marks associated with each pseudogene. Based on their distribution, we develop simple statistical models for each type of activity, which we validate with large-scale RT-PCR-Seq experiments. Finally, we compare our pseudogenes with conservation and variation data from primate alignments and the 1000 Genomes project, producing lists of pseudogenes potentially under selection.
Conclusions: At one extreme, some pseudogenes possess conventional characteristics of functionality; these may represent genes that have recently died. On the other hand, we find interesting patterns of partial activity, which may suggest that dead genes are being resurrected as functioning non-coding RNAs. The activity data of each pseudogene are stored in an associated resource, psiDR, which will be useful for the initial identification of potentially functional pseudogenes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3491395 | PMC |
http://dx.doi.org/10.1186/gb-2012-13-9-r51 | DOI Listing |
Sleep Med
January 2025
Grenoble Alpes University, HP2 Laboratory, INSERM U1300, Grenoble Alpes University Hospital, Grenoble, France. Electronic address:
AIDS Care
January 2025
South African Medical Research Council / Stellenbosch University Genomics of Brain Disorders Research Unit, Department of Psychiatry, Stellenbosch University, Cape Town, South Africa.
HIV and the consequences of HIV-associated neurocognitive disorders (HAND) disproportionally affect South African women. Longitudinal neurocognitive data on women with HIV are limited. We tracked longitudinal neurocognitive profiles of South African women with HIV (baseline = 140) compared to women without HIV (baseline = 156).
View Article and Find Full Text PDFPLoS Pathog
January 2025
Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America.
The continued evolution of SARS-CoV-2 variants capable of subverting vaccine and infection-induced immunity suggests the advantage of a broadly protective vaccine against betacoronaviruses (β-CoVs). Recent studies have isolated monoclonal antibodies (mAbs) from SARS-CoV-2 recovered-vaccinated donors capable of neutralizing many variants of SARS-CoV-2 and other β-CoVs. Many of these mAbs target the conserved S2 stem region of the SARS-CoV-2 spike protein, rather than the receptor binding domain contained within S1 primarily targeted by current SARS-CoV-2 vaccines.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Malaria Functional Genomics Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, United States of America.
Malaria is a complex parasitic disease caused by species of Plasmodium parasites. Infection with the parasites can lead to a spectrum of symptoms and disease severity, influenced by various parasite, host, and environmental factors. There have been some successes in developing vaccines against the disease recently, but the vaccine efficacies require improvement.
View Article and Find Full Text PDFMol Biol Evol
January 2025
Center for Genomics and Systems Biology, Department of Biology, New York University.
Copy-number variants (CNVs) are an important class of genetic variation that can mediate rapid adaptive evolution. Whereas CNVs can increase the relative fitness of the organism, they can also incur a cost due to the associated increased gene expression and repetitive DNA. We previously evolved populations of Saccharomyces cerevisiae over hundreds of generations in glutamine-limited (Gln-) chemostats and observed the recurrent evolution of CNVs at the GAP1 locus.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!