Dynamic switching of a plasmonic resonance may find numerous applications in subwavelength optoelectronics, spectroscopy, and sensing. Graphene shows a highly tunable carrier concentration under electrostatic gating, and this could provide an effective route to achieving electrical control of the plasmonic resonance. In this Letter, we demonstrate electrical control of a plasmonic resonance at infrared frequencies using large-area graphene. Plasmonic structures fabricated on graphene enhance the interaction of the incident optical field with the graphene sheet, and the impact of graphene is much stronger at mid-infrared wavelengths. Full-wave simulations, where graphene is modeled as a 1 nm thick effective medium, show excellent agreement with experimental results.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nl302322t | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!