Controlling the localization of polymer-functionalized nanoparticles in mixed lipid/polymer membranes.

ACS Nano

Macromolecular Chemistry, Institute of Chemistry, Faculty of Natural Sciences II (Chemistry, Physics and Mathematics), Martin-Luther University Halle-Wittenberg, D-06120 Halle (Saale), Germany.

Published: October 2012

Surface hydrophobicity plays a significant role in controlling the interactions between nanoparticles and lipid membranes. In principle, a nanoparticle can be encapsulated into a liposome, either being incorporated into the hydrophobic bilayer interior or trapped within the aqueous vesicle core. In this paper, we demonstrate the preparation and characterization of polymer-functionalized CdSe NPs, tuning their interaction with mixed lipid/polymer membranes from 1,2-dipalmitoyl-sn-glycero-3-phophocholine and PIB(87)-b-PEO(17) block copolymer by varying their surface hydrophobicity. It is observed that hydrophobic PIB-modified CdSe NPs can be selectively located within polymer domains in a mixed lipid/polymer monolayer at the air/water interface, changing their typical domain morphologies, while amphiphilic PIB-PEO-modified CdSe NPs showed no specific localization in phase-separated lipid/polymer films. In addition, hydrophilic water-soluble CdSe NPs can readily adsorb onto spread monolayers, showing a larger effect on the molecule packing at the air/water interface in the case of pure lipid films compared to mixed monolayers. Furthermore, the incorporation of PIB-modified CdSe NPs into hybrid lipid/polymer GUVs is demonstrated with respect to the prevailing phase state of the hybrid membrane. Monitoring fluorescent-labeled PIB-CdSe NPs embedded into phase-separated vesicles, it is demonstrated that they are enriched in one specific phase, thus probing their selective incorporation into the hydrophobic portion of PIB(87)-b-PEO(17) BCP-rich domains. Thus, the formation of biocompatible hybrid GUVs with selectively incorporated nanoparticles opens a new perspective for subtle engineering of membranes together with their (nano-) phase structure serving as a model system in designing functional nanomaterials for effective nanomedicine or drug delivery.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nn3023602DOI Listing

Publication Analysis

Top Keywords

cdse nps
20
mixed lipid/polymer
12
lipid/polymer membranes
8
surface hydrophobicity
8
pib-modified cdse
8
air/water interface
8
nps
6
lipid/polymer
5
cdse
5
controlling localization
4

Similar Publications

As a newly emerging technology, conformational engineering (CE) has been gradually displaying the power of producing protein-like nanoparticles (NPs) by tuning flexible protein fragments into their original native conformation on NPs. But apparently, not all types of NPs can serve as scaffolds for CE. To expedite the CE technology on a broader variety of NPs, the essential characteristic of NPs as scaffolds for CE needs to be identified.

View Article and Find Full Text PDF

A variety of ZnCdS-based semiconductor nanoparticle heterostructures with extended exciton lifetimes were synthesized to enhance the efficacy of photocatalytic hydrogen production in water. Specifically, doped nanoparticles (NPs), as well as core/shell NPs with and without palladium and platinum co-catalysts, were solubilized into water using various methods to assess their efficacy for solar H fuel synthesis. The best results were obtained with low bandgap ZnCdS cores and ZnCdS/ZnS core/shell NPs with palladium co-catalysts.

View Article and Find Full Text PDF

To sensitively monitor trace-level of malathion (MAT) in vegetable samples, an ultrasensitive solid-state electrochemiluminescence (ECL) sensor was proposed based on TiO@CdSe and Ru(bpy)@Ag NPs. In this system, the introduction of Ag NPs enhanced the initial ECL signal of Ru(bpy)- tripropylamine (TPrA). When TiO@CdSe was introduced into the system, the ECL signal was further enhanced, which may be due to the synergistic effect of the two complexes.

View Article and Find Full Text PDF

Nanoparticles (NPs) have been widely studied and applied in medical and pharmaceutical fields. When NPs enter the environment, they are covered with protein molecules to form the so-called "protein corona". Because NPs and proteins are comparable in size, the shape of NPs has a significant impact on NP-protein interactions.

View Article and Find Full Text PDF
Article Synopsis
  • The text discusses the importance of detecting non-steroidal anti-inflammatory drugs (NSAIDs) due to their common use and possible effects on health and the environment.
  • Recent advancements in sensing technologies for NSAIDs are explored, particularly focusing on molecular receptors using specialized fluorescent molecules and advanced nanostructured assemblies.
  • The review also addresses the binding mechanisms, challenges, and future directions in developing innovative sensors for rapid and selective NSAID detection, filling a gap in the existing literature on this topic.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!