The capability of some natural molecular building blocks to self-organize into defined supramolecular architectures is a versatile tool for nanotechnological applications. Their site-selective integration into a technical context, however, still poses a major challenge. RNA-directed self-assembly of tobacco mosaic virus-derived coat protein on immobilized RNA scaffolds presents a possibility to grow nucleoprotein nanotubes in place. Two new methods for their site-selective, bottom-up assembly are introduced. For this purpose, isothiocyanate alkoxysilane was used to activate oxidic surfaces for the covalent immobilization of DNA oligomers, which served as linkers for assembly-directing RNA. Patterned silanization of surfaces was achieved (1) on oxidic surfaces via dip-pen nanolithography and (2) on polymer surfaces (poly(dimethylsiloxane)) via selective oxidization by UV-light irradiation in air. Atomic force microscopy and X-ray photoelectron spectroscopy were used to characterize the surfaces. It is shown for the first time that the combination of the mentioned structuring methods and the isothiocyanate-based chemistry is appropriate (1) for the site-selective immobilization of nucleic acids and, thus, (2) for the formation of viral nanoparticles by bottom-up self-assembly after adding the corresponding coat proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/la302774h | DOI Listing |
Nat Commun
January 2025
Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore.
Biological materials, such as bamboo, are naturally optimized composites with exceptional mechanical properties. Inspired by such natural composites, traditional methods involve extracting nanofibers from natural sources and applying them in composite materials, which, however, often results in less ideal mechanical properties. To address this, this study develops a bottom-up nanofiber assembly strategy to create strong fiber-reinforced composite hydrogels inspired by the hierarchical assembly of bamboo.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Department of Chemistry, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel.
ConspectusA key challenge in modern chemistry research is to mimic life-like functions using simple molecular networks and the integration of such networks into the first functional artificial cell. Central to this endeavor is the development of signaling elements that can regulate the cell function in time and space by producing entities of code with specific information to induce downstream activity. Such artificial signaling motifs can emerge in nonequilibrium systems, exhibiting complex dynamic behavior like bistability, multistability, oscillations, and chaos.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Ivana Lučića 5, 10002 Zagreb, Croatia.
Seaborn trade has a share of about 80 % in global supply chains and is responsible for approximately 10 % of global carbon emissions. This is why the environmental impact of ships and the shipbuilding process matter. Despite that, this topic is addressed rather sparsely in the present literature body.
View Article and Find Full Text PDFAdv Mater
January 2025
Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei Provincial Engineering Research Center of Emerging Functional Coating Materials, School of Resource and Environmental Sciences, Wuhan University, Wuhan, 430079, China.
Cellulose nanofibers (CNFs) are ideal building blocks for creating lightweight and strong bulk structural materials due to their unique supramolecular structure and exceptional mechanical properties within the crystalline regions. However, assembling CNFs into dense bulk structural materials with customizable shape and functionalities remains a great challenge, hindering their practical applications. Here, the dewatering issue of aqueous CNF dispersions is addressed by regulating supramolecular scale hydrophilicity using lactic acid, combined with hot-press molding.
View Article and Find Full Text PDFSmall
January 2025
Department of Chemical Engineering, University of South Carolina, Columbia, SC, 29208, USA.
Precisely crafted hierarchical architectures found in naturally derived biomaterials underpin the exceptional performance and functionality showcased by the host organism. In particular, layered helical assemblies composed of cellulose, chitin, or collagen serve as the foundation for some of the most mechanically robust and visually striking natural materials. By utilizing structured materials in additive manufacturing techniques such as extrusion-based 3D printing, the intrinsic deformation process can be used to implement bottom-up design of printed constructs, offering the potential to create intricate macroscale geometries with embedded nanoscale functionality.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!