Mytilus coruscus (family Mytilidae) is one of the most important marine shellfish species in Korea. During the past few decades, this species has become endangered due to the loss of habitats and overfishing. Despite this species' importance, information on its genetic background is scarce. In this study, we developed microsatellite markers for M. coruscus using next-generation sequencing. A total of 263,900 raw reads were obtained from a quarter-plate run on the 454 GS-FLX titanium platform, and 176,327 unique sequences were generated with an average length of 381 bp; 2569 (1.45%) sequences contained a minimum of five di- to tetra-nucleotide repeat motifs. Of the 51 loci screened, 46 were amplified successfully, and 22 were polymorphic among 30 individuals, with seven of trinucleotide repeats and three of tetranucleotide repeats. All loci exhibited high genetic variability, with an average of 17.32 alleles per locus, and the mean observed and expected heterozygosities were 0.67 and 0.90, respectively. In addition, cross-amplification was tested for all 22 loci in another congener species, M. galloprovincialis. None of the primer pairs resulted in effective amplification, which might be due to their high mutation rates. Our work demonstrated the utility of next-generation 454 sequencing as a method for the rapid and cost-effective identification of microsatellites. The high degree of polymorphism exhibited by the 22 newly developed microsatellites will be useful in future conservation genetic studies of this species.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3431879 | PMC |
http://dx.doi.org/10.3390/ijms130810583 | DOI Listing |
Genet Mol Biol
January 2025
Instituto Nacional de Pesquisas da Amazônia, Programa de Pós-Graduação em Genética, Conservação e Biologia Evolutiva (PPG GCBEv), Manaus, AM, Brazil.
Centromochlus heckelii has the lowest diploid chromosome number (2n = 46) and the only described heteromorphic sex chromosome system in Auchenipteridae. This study presents a population of C. heckelii from the Central Amazon basin with subtle variations in the karyotype composition and a variant W chromosome with distinct morphology and increased C-positive heterochromatin content.
View Article and Find Full Text PDFJ Appl Genet
January 2025
Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Poznan, Poland.
Identification of chromosomal abnormalities is an important issue in animal breeding and veterinary medicine. Routine cytogenetic diagnosis of domestic animals began in the 1960s with the aim of identifying carriers of centric fusion between chromosome 1 and 29 in cattle. In the 1970s, chromosome banding techniques were introduced, and in the 1980s, the first cytogenomic techniques, based on the development of locus- and chromosome-specific probes, were used.
View Article and Find Full Text PDFPeerJ
January 2025
Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Nanning, Guangxi, China.
Background: var. is a variety in the section of the genus of the family Theaceae which is native to Fangchenggang, Guangxi, China. To date, the genetic diversity and structure of this variety remains to be understood.
View Article and Find Full Text PDFSci Rep
January 2025
The Biology and DNA Section, General Department of Forensic Science and Criminology, Dubai Police General Head Quarters, Dubai, United Arab Emirates.
This study evaluated the effectiveness of the amplicon RX post-PCR clean-up kit in enhancing trace DNA profile recovery from forensic casework samples amplified using the GlobalFiler PCR amplification kit. The impact of post-PCR clean-up on allele recovery and signal intensity was assessed in both trace casework samples and control samples across a range of DNA concentrations. The results showed that the amplicon RX method significantly improved allele recovery compared to the 29-cycle protocol (p = 8.
View Article and Find Full Text PDFBMC Genomics
January 2025
Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, 610225, China.
Background: Microsatellites are highly polymorphic repeat sequences ubiquitously interspersed throughout almost all genomes which are widely used as powerful molecular markers in diverse fields. Microsatellite expansions play pivotal roles in gene expression regulation and are implicated in various neurological diseases and cancers. Although much effort has been devoted to developing efficient tools for microsatellite identification, there is still a lack of a powerful tool for large-scale microsatellite analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!