Regulating the transition from lineage-restricted progenitors to terminally differentiated cells is a central aspect of nervous system development. Here, we investigated the role of the nucleoprotein geminin in regulating neurogenesis at a mechanistic level during both Xenopus primary neurogenesis and mammalian neuronal differentiation in vitro. The latter work utilized neural cells derived from embryonic stem and embryonal carcinoma cells in vitro and neural stem cells from mouse forebrain. In all of these contexts, geminin antagonized the ability of neural basic helix-loop-helix (bHLH) transcription factors to activate transcriptional programs promoting neurogenesis. Furthermore, geminin promoted a bivalent chromatin state, characterized by the presence of both activating and repressive histone modifications, at genes encoding transcription factors that promote neurogenesis. This epigenetic state restrains the expression of genes that regulate commitment of undifferentiated stem and neuronal precursor cells to neuronal lineages. However, maintaining geminin at high levels was not sufficient to prevent terminal neuronal differentiation. Therefore, these data support a model whereby geminin promotes the neuronal precursor cell state by modulating both the epigenetic status and expression of genes encoding neurogenesis-promoting factors. Additional developmental signals acting in these cells can then control their transition toward terminal neuronal or glial differentiation during mammalian neurogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3486176PMC
http://dx.doi.org/10.1128/MCB.00737-12DOI Listing

Publication Analysis

Top Keywords

epigenetic status
8
mammalian neurogenesis
8
neuronal differentiation
8
transcription factors
8
genes encoding
8
expression genes
8
neuronal precursor
8
terminal neuronal
8
neuronal
7
geminin
6

Similar Publications

Background/aim: The five members of the mammalian muscarinic acetylcholine receptor family are encoded by the cholinergic receptor, muscarinic, 1-5 (CHRM1-5) genes. CHRM genes are incriminated in formation of various cancer types, but their roles in head and neck squamous cell carcinoma (HNSCC) are improperly understood. Aberrant epigenetic modifications of specific tumor-suppressor genes and oncogenes are known to promote cancer development.

View Article and Find Full Text PDF

Hypothalamic SIRT1-mediated regulation of the hormonal trigger of ovulation and its repression in energy deficit.

Metabolism

December 2024

Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Department of Cell Biology, Physiology and Immunology, University of Cordoba; and Hospital Universitario Reina Sofia, Cordoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain. Electronic address:

Female reproduction is highly sensitive to body energy stores; persistent energy deficit, as seen in anorexia or strenuous exercise, is known to suppress ovulation via ill-defined mechanisms. We report herein that hypothalamic SIRT1, a key component of the epigenetic machinery that links nutritional status and puberty onset via modulation of Kiss1, plays a critical role in the control of the preovulatory surge of gonadotropins, i.e.

View Article and Find Full Text PDF
Article Synopsis
  • The pathogenesis of long COVID (LC) involves uncertainty, complicating the search for effective therapies.
  • The hypothesis suggests that chronic damage to the body's anti-inflammatory mechanisms, particularly through the vagus nerve, HPA axis, and mitochondrial function, plays a crucial role in LC development.
  • The theory posits that SARS-CoV-2 alters these systems at various levels, leading to persistent inflammation due to impaired anti-inflammatory responses from acetylcholine and cortisol, warranting further investigation into glucocorticoid receptor sensitivity and potential long-term epigenetic effects.
View Article and Find Full Text PDF

DNA methylation is an essential epigenetic mechanism for regulation of gene expression, through which many physiological (X-chromosome inactivation, genetic imprinting, chromatin structure and miRNA regulation, genome defense, silencing of transposable elements) and pathological processes (cancer and repetitive sequences-associated diseases) are regulated. Nanopore sequencing has emerged as a novel technique that can analyze long strands of DNA (long-read sequencing) without chemically treating the DNA. Interestingly, nanopore sequencing can also extract epigenetic status of the nucleotides (including both 5-Methylcytosine and 5-hydroxyMethylcytosine), and a large variety of bioinformatic tools have been developed for improving its detection properties.

View Article and Find Full Text PDF

The pathogenesis of many immune disorders is linked to regulatory macrophage dysfunction. The mechanism underlying it is unclear. The objective of this study is to examine the mechanism by which the PRKN ubiquitin protein ligase (PRKN) inhibits the development of regulatory macrophages (Mreg).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!