Novel starch-based PVA thermoplastic capsules for hydrophilic lipid-based formulations.

J Pharm Sci

University of Applied Sciences and Arts Northwestern Switzerland, Institute of Pharma Technology, Muttenz, Switzerland.

Published: December 2012

For decades, gelatin has been used in the rotary die process as a shell-forming material of soft capsules because of its unique physicochemical properties. However, with respect to the encapsulation of comparatively hydrophilic lipid-based formulations, gelatin has one considerable drawback: Immediately after production, the capsule shell contains a large amount of water (up to 35%). There is the potential for water to migrate from the capsule shell into the formulation, which will lead to a decrease in drug solubility and, in turn, the potential for drug crystallization. The present study introduces a novel capsule material that was obtained from extrusion. The starch-based polyvinyl alcohol thermoplastic capsules (S-PVA-C) mainly comprised a blend of starch and PVA. Gelatin and the novel material were used to encapsulate a hydrophilic lipid-based system of fenofibrate. Considerable water migration was observed from the soft gelatin shell to the hydrophilic formulation during drying and drug crystallization resulted in soft gelatin capsules. In contrast, S-PVA-C displayed no substantial water exchange or drug crystallization upon storage. The thermoplastic capsule material further exhibited more surface roughness and higher resistance to mechanical deformation compared with gelatin. In conclusion, S-PVA-C provided a robust drug product following encapsulation of a rather hydrophilic lipid-based formulation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jps.23315DOI Listing

Publication Analysis

Top Keywords

hydrophilic lipid-based
16
drug crystallization
12
thermoplastic capsules
8
lipid-based formulations
8
capsule shell
8
capsule material
8
soft gelatin
8
gelatin
6
hydrophilic
5
drug
5

Similar Publications

Multiparticulate drug delivery systems offer advantages in controlled release, dose flexibility, and personalized medicine. Fusion prilling, a process that produces spherical lipid-based microparticles through vibrating nozzles, is gaining interest in the field. This study aims to explore the use of fusion prilling to encapsulate crystallizable water-in-oil emulsions, enabling the incorporation of hydrophilic active pharmaceutical ingredients (APIs) within lipid matrices.

View Article and Find Full Text PDF

Gene transfection is a fundamental technique in the fields of biological research and therapeutic innovation. Due to their biocompatibility and membrane-mimetic properties, lipid vectors serve as essential tools in transfection. The successful delivery of genetic material into the cytoplasm is contingent upon the fusion of the vector and cellular membranes, which enables hydrophilic polynucleic acids to traverse the hydrophobic barriers of two intervening membranes.

View Article and Find Full Text PDF

Overcoming drug delivery challenges with lipid-based nanofibers for enhanced wound repair.

Biomater Sci

December 2024

Department of Animal Biology, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Gachibowli, Hyderabad, 500046, Telangana, India.

Wound healing is a dynamic, multi-phase process that includes haemostasis, tissue regeneration, cellular proliferation, and matrix modification. Traditional wound care procedures frequently encounter complications such as delayed healing and infection, demanding new therapeutic approaches. In this context, nanomaterial-based devices provide considerable benefits due to their capacity to improve medication delivery and tissue healing.

View Article and Find Full Text PDF

Lipid-based nanocarriers have emerged as promising vehicles for the delivery of various therapeutic agents, owing to their biocompatibility, stability, and ability to encapsulate both hydrophilic and hydrophobic drugs. Among these lipid-based nanocarriers, Solid Lipid Nanoparticles (SLNs) and Nanostructured Lipid Carriers (NLCs) have gained significant attention in the field of drug delivery. This comparative review aims to provide a comprehensive analysis of SLNs and NLCs, focusing on their formulation, physicochemical properties, drug-loading capacity, stability, and drug release profiles.

View Article and Find Full Text PDF

Cancer is considered to be among the main causes of death worldwide. Treatment options for cancer are numerous. The type of cancer and its stage of progression determine which kind of treatment is needed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!