Correction of sampling bias in a cross-sectional study of post-surgical complications.

Stat Med

Department of Health Services Research, Ministry of Health, 29 Rivka Street, 91010 Jerusalem, Israel.

Published: June 2013

Cross-sectional designs are often used to monitor the proportion of infections and other post-surgical complications acquired in hospitals. However, conventional methods for estimating incidence proportions when applied to cross-sectional data may provide estimators that are highly biased, as cross-sectional designs tend to include a high proportion of patients with prolonged hospitalization. One common solution is to use sampling weights in the analysis, which adjust for the sampling bias inherent in a cross-sectional design. The current paper describes in detail a method to build weights for a national survey of post-surgical complications conducted in Israel. We use the weights to estimate the probability of surgical site infections following colon resection, and validate the results of the weighted analysis by comparing them with those obtained from a parallel study with a historically prospective design.

Download full-text PDF

Source
http://dx.doi.org/10.1002/sim.5608DOI Listing

Publication Analysis

Top Keywords

post-surgical complications
12
sampling bias
8
cross-sectional designs
8
cross-sectional
5
correction sampling
4
bias cross-sectional
4
cross-sectional study
4
study post-surgical
4
complications cross-sectional
4
designs monitor
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!