Hybrid silk scaffolds combining knitted silk fibers and silk sponge have been recently developed for use as ligament-alone grafts. Incorporating an osteoinductive phase into the ends of a ligament scaffold may potentially generate an integrated "bone-ligament-bone" graft and improve graft osteointegration with host bone. To explore the possible application of hydroxyapatite (HA) coating in the fabrication of osteoinductive ends of silk-based scaffold, HA was coated on the hybrid silk scaffold and the effects to the bone-related cells were evaluated. HA could be coated in a uniform and controlled manner on the silk sponge, using an alternate soaking technology, with the amount deposited being dependent on the number of soaking cycles. HA coating also progressively reduced the hydrophobicity of silk surface (decreasing water contact angle from 87° to 42-76°, after 1-3 soaking cycles), making the HA-coated silk scaffold less favorable for initial cell attachments; but the attached cells showed viability and sustained proliferation on the HA-coated scaffold. As demonstrated by real-time polymerase chain reaction and alkaline phosphatase assay, the osteoinductivity of HA-coated silk scaffolds resulted in the osteogenic differentiation of bone marrow mesenchymal stem cells, and the osteoconductivity of HA-coated silk scaffolds supported osteoblasts growth and maintained the properties of mature osteoblasts. These properties of HA-coating demonstrated its possible application in fabricating osteoinductive ends of the silk-based ligament graft to potentially enhance graft-to-host bone integration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.a.34333 | DOI Listing |
Nanomaterials (Basel)
January 2025
Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
Environmental changes, such as applied medication, nutrient depletion, and accumulation of metabolic residues, affect cell culture activity. The combination of these factors reflects on the local temperature distribution and local oxygen concentration towards the cell culture scaffold. However, determining the temporal variation of local temperature, independent of local oxygen concentration changes in biological specimens, remains a significant technological challenge.
View Article and Find Full Text PDFBiomimetics (Basel)
January 2025
Agroindustrial Research Group, Department of Chemical Engineering, Universidad Pontificia Bolivariana, Cq. 1 #70-01, Medellín 050031, Colombia.
Fibrous by-products, including defective or double cocoons, are obtained during silk processing. These cocoons primarily contain fibroin and sericin (SS) proteins along with minor amounts of wax and mineral salts. In conventional textile processes, SS is removed in the production of smooth, lustrous silk threads, and is typically discarded.
View Article and Find Full Text PDFACS Omega
January 2025
Chemistry Department, Koc University, Sariyer, Istanbul 34450, Turkey.
Silk fibroin (SF), a natural polymer with very desirable physicochemical and biological properties, is an ideal material for crafting biocompatible scaffolds in tissue engineering. However, conventional methods for removing the sericin layer and dissolving SF often involve environmentally harmful reagents and processes, requiring extensive dialysis procedures to purify the fibers produced. Such processes may also damage the surface and bulk properties of the SF produced.
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Institute of Physics and Materials Science, Department of Natural Sciences and Sustainable Ressources, BOKU University, Peter Jordan-Straß 82, 1190 Vienna, Austria.
Spider silk (SPSI) is a promising candidate for use as a filler material in nerve guidance conduits (NGCs), facilitating peripheral nerve regeneration by providing a scaffold for Schwann cells (SCs) and axonal growth. However, the specific properties of SPSI that contribute to its regenerative success remain unclear. In this study, the egg sac silk of is investigated, which contains two distinct fiber types: tubuliform (TU) and major ampullate (MA) silk.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, No. 199 Ren'ai Road, Industrial Park, Suzhou 215123, PR China. Electronic address:
Exogenous genes are inserted into target cells during gene therapy in order to compensate or rectify disorders brought on by faulty or aberrant genes. However, gene therapy is still in its early stages because of its unsatisfactory therapeutic effects which are mainly due to low transfection efficiency of vectors, high toxicity, and poor target specificity. A natural polymer with numerous bioactive sites, good mechanical qualities, biodegradability, biocompatibility, and processability called silk fibroin has gained attention as a possible gene therapy vector.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!