Different low-molecular-weight thiols, including glutathione, cysteine, and cysteinylglycine are physiological free radical scavengers. On the other hand, homocysteine may play a role as an oxidant. The aim of our present study was to establish in vitro the effects of the commercial extract of Aronia melanocarpa (Aronox(®)) on the amount of selected low-molecular-weight thiols and the activity of antioxidative enzymes (superoxide dismutase, glutathione peroxidase, and glutathione reductase) in plasma obtained from patients with invasive breast cancer during different phases of treatment [before or after the surgery and patients after different phases of chemotherapy (doxorubicin and cyclophosphamide)] and from healthy subjects. Patients were hospitalized in Department of Oncological Surgery and Department of Chemotherapy, Medical University of Lodz, Poland. The level of low-molecular-weight thiols was determined by high-performance liquid chromatography. We observed that in the presence of the Aronia extract changes in amount of thiols in plasma from breast cancer patients (at all tested groups) were significantly reduced. Our results showed that tested commercial extract reduced modifications of antioxidative enzymes activity in plasma from patients during different phases of treatment, but this effect was not statistical significant. Our results suggest that the Aronia extract supplementation in breast cancer patients has a beneficial effect on thiols concentration in plasma. Plasma, as reported in this work, could be used as an experimental model to evaluate the beneficial action of plant supplements, including phenolic extracts on thiols or other molecules during different phases of treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11010-012-1444-2DOI Listing

Publication Analysis

Top Keywords

phases treatment
16
breast cancer
16
commercial extract
12
low-molecular-weight thiols
12
antioxidative enzymes
8
plasma patients
8
patients phases
8
aronia extract
8
cancer patients
8
thiols
6

Similar Publications

Oral Regimens for Rifampin-Resistant, Fluoroquinolone-Susceptible Tuberculosis.

N Engl J Med

January 2025

From Médecins Sans Frontières (L.G., F.V.), Sorbonne Université, INSERM Unité 1135, Centre d'Immunologie et des Maladies Infectieuses (L.G.), Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Universitaire Sorbonne Université, Hôpital Pitié-Salpêtrière, Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux (L.G.), and Epicentre (M.G., E. Baudin), Paris, and Translational Research on HIV and Endemic and Emerging Infectious Diseases, Montpellier Université de Montpellier, Montpellier, Institut de Recherche pour le Développement, Montpellier, INSERM, Montpellier (M.B.) - all in France; Interactive Development and Research, Singapore (U.K.); McGill University, Epidemiology, Biostatistics, and Occupational Health, Montreal (U.K.); UCSF Center for Tuberculosis (G.E.V., P.N., P.P.J.P.) and the Division of HIV, Infectious Diseases, and Global Medicine (G.E.V.), University of California at San Francisco, San Francisco; the National Scientific Center of Phthisiopulmonology (A.A., E. Berikova) and the Center of Phthisiopulmonology of Almaty Health Department (A.K.), Almaty, and the City Center of Phthisiopulmonology, Astana (Z.D.) - all in Kazakhstan; Médecins Sans Frontières (C.B., I.M.), the Medical Research Council Clinical Trials Unit at University College London (I.M.), and St. George's University of London Institute for Infection and Immunity (S.W.) - all in London; MedStar Health Research Institute, Washington, DC (M.C.); Médecins Sans Frontières, Mumbai (V. Chavan), the Indian Council of Medical Research Headquarters-New Delhi, New Delhi (S. Panda), and the Indian Council of Medical Research-National AIDS Research Institute, Pune (S. Patil) - all in India; the Centre for Infectious Disease Epidemiology and Research (V. Cox) and the Department of Medicine (H. McIlleron), University of Cape Town, and the Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine (S.W.) - both in Cape Town, South Africa; the Institute of Tropical Medicine, Antwerp, Belgium (B. C. J.); Médecins Sans Frontières, Geneva (G.F., N.L.); Médecins Sans Frontières, Yerevan, Armenia (O.K.); the National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia (N.K.); Partners In Health (M.K.) and Jhpiego Lesotho (L.O.) - both in Maseru; Socios En Salud Sucursal Peru (L.L., S.M.-T., J.R., E.S.-G., D.E.V.-V.), Hospital Nacional Sergio E. Bernales, Centro de Investigacion en Enfermedades Neumologicas (E.S.-G.), Hospital Nacional Dos de Mayo (E.T.), Universidad Nacional Mayor de San Marcos (E.T.), and Hospital Nacional Hipólito Unanue (D.E.V.-V.) - all in Lima; Global Health and Social Medicine, Harvard Medical School (L.L., K.J.S., M.L.R., C.D.M.), Partners In Health (L.L., K.J.S., M.L.R., C.D.M.), the Division of Global Health Equity, Brigham and Women's Hospital (K.J.S., M.L.R., C.D.M.), the Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, (L.T.), and Harvard T.H. Chan School of Public Health (L.T.) - all in Boston; and the Indus Hospital and Health Network, Karachi, Pakistan (H. Mushtaque, N.S.).

Background: For decades, poor treatment options and low-quality evidence plagued care for patients with rifampin-resistant tuberculosis. The advent of new drugs to treat tuberculosis and enhanced funding now permit randomized, controlled trials of shortened-duration, all-oral treatments for rifampin-resistant tuberculosis.

Methods: We conducted a phase 3, multinational, open-label, randomized, controlled noninferiority trial to compare standard therapy for treatment of fluoroquinolone-susceptible, rifampin-resistant tuberculosis with five 9-month oral regimens that included various combinations of bedaquiline (B), delamanid (D), linezolid (L), levofloxacin (Lfx) or moxifloxacin (M), clofazimine (C), and pyrazinamide (Z).

View Article and Find Full Text PDF

Background: Although substantial progress has been made in establishing evidence-based psychosocial clinical interventions and implementation strategies for mental health, translating research into practice-particularly in more accessible, community settings-has been slow.

Objective: This protocol outlines the renewal of the National Institute of Mental Health-funded University of Washington Advanced Laboratories for Accelerating the Reach and Impact of Treatments for Youth and Adults with Mental Illness Center, which draws from human-centered design (HCD) and implementation science to improve clinical interventions and implementation strategies. The Center's second round of funding (2023-2028) focuses on using the Discover, Design and Build, and Test (DDBT) framework to address 3 priority clinical intervention and implementation strategy mechanisms (ie, usability, engagement, and appropriateness), which we identified as challenges to implementation and scalability during the first iteration of the center.

View Article and Find Full Text PDF

Purpose: Mobocertinib is an oral epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor that targets exon 20 insertion (ex20ins) mutations in non-small cell lung cancer (NSCLC). This open-label, phase III trial (EXCLAIM-2: ClinicalTrials.gov identifier: NCT04129502) compared mobocertinib versus platinum-based chemotherapy as first-line treatment of ex20ins+ advanced/metastatic NSCLC.

View Article and Find Full Text PDF

Purpose: Identifying therapeutic targets for Signet Ring Cell Carcinoma (SRCC) of the colon and rectum is a clinical challenge due to the lack of Patient-Derived Organoids (PDO) or Xenografts (PDX). We present a robust method to establish PDO and PDX models to answer address this unmet need. We demonstrate that these models identify novel therapeutic strategies targeting therapy resistance and peritoneal metastasis.

View Article and Find Full Text PDF

Background: Data in clear cell renal cell carcinoma (ccRCC) xenografts defined the seleno-L-methionine (SLM) dose and the plasma selenium concentrations associated with the enhancement of HIF1α/2α degradation, stabilization of tumor vasculature, enhanced drug delivery, and efficacy of axitinib. The data provided the rationale for the development of this phase I clinical trial of SLM and axitinib in advanced or metastatic relapsed ccRCC.

Patients And Methods: Patients were ≥18 years with histologically and radiologically confirmed advanced or metastatic ccRCC who had received at least one prior systemic therapy, which could include axitinib (last dose ≥6 months prior to enrollment).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!