The genomic structure and generational stability of the transgene carried by the Cassie (CA) line of the transgenic Enviropig™, a prospective food animal, are reported here. This transgene is composed of the Escherichia coli phytase coding sequence regulated by the mouse parotid secretory protein promoter to direct secretion of phytase in the saliva. In the CA line the transgene integrated in chromosome 4 is present as a concatemer of three copies, two in a head to tail orientation and the third in a reverse orientation 3' to the other copies with a 6 kbp deletion in the 5' promoter region. The overall size of the integrated transgene complex is 46 kbp. During integration a 66 kbp segment of the chromosome was deleted, but a BLAST search of the segment from a GenBank clone did not reveal any essential genes. The transgene integration site was stable through 9 generations analyzed. Phytase activity in the saliva was similar among 11 day old hemizygous boars and gilts and remained relatively constant through nine generations of hemizygous pigs. However, as the pigs grew there generally was a gradual decrease in activity that stabilized when pigs reached the finisher phase of growth (4-6 months old). Homozygous pigs exhibited 1.5 fold higher phytase activity (P < 0.0001) than that of hemizygous littermates. Moreover, no differential salivary phytase activity was seen in hemizygotes arising from CA-Yorkshire and CA-Duroc breed outcrosses, suggesting that expression of the transgene is unaffected by genetic background. This data demonstrates that an exogenous phytase gene can be stably transmitted and expressed in the salivary glands of a domestic food animal.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11248-012-9646-7 | DOI Listing |
Transl Anim Sci
August 2024
Department of Nutrition and Animal Production, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Pirassununga-SP, 13635-900, Brazil.
Supplementing swine diets with phytase increases phosphorus release by approximately 50% from cereal phytates. The increase in phosphorus availability allows for a reduction in dietary phosphorus supplementation from mineral sources and decreases the environmental impact of pork production through a decrease in phosphorus excretion. Superdosing phytase has been reported to boost swine productivity, improve the digestibility of other nutrients, and mitigate the antinutritional effects of phytates.
View Article and Find Full Text PDFJ Adv Vet Anim Res
June 2024
Department of Animal Nutrition, Faculty of Animal Husbandry, Bangladesh Agricultural University, Mymensingh, Bangladesh.
Objective: Current research aimed to compare the effects of fungal and bacterial phytase with or without citric acid (CA) on growth performance, serum mineral profile, bone quality, and nutrient retention in birds given non-phytate phosphorus (nPP)-deficient diets.
Materials And Methods: A total of 216 Indian River broiler chicks were disturbed into six groups, namely, i) positive control (PC), ii) negative control (NC) contained 0.2% lower nPP than that in the PC diet, iii) NC + fungal phytase (), iv) NC + fungal phytase with 2% CA, v) NC + bacterial phytase (), and vi) NC + bacterial phytase with 2% CA.
J Microbiol Biotechnol
August 2024
Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang 330096, Jiangxi Province, P.R. China.
The aim of this study was to modify phytase YiAPPA via protein surficial residue mutation to obtain phytase mutants with improved thermostability and activity, enhancing its application potential in the food industry. First, homology modeling of YiAPPA was performed. By adopting the strategy of protein surficial residue mutation, the lysine (Lys) and glycine (Gly) residues on the protein surface were selected for site-directed mutagenesis to construct single-site mutants.
View Article and Find Full Text PDFProtein Expr Purif
August 2024
Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
Phytate (inositol hexaphosphate) is the major storage form of phosphorus (P) in nature, and phytases catalyze the hydrolysis of P from phytate and the formation of inositol phosphate isomers. In this study, a bacterium that produces phytase was isolated in a phytase screening medium. The bacterium was identified as Klebsiella sp.
View Article and Find Full Text PDFCurr Issues Mol Biol
April 2024
Biotechnology and Biosciences Research Group, School of Chemical Sciences and Engineering, Autonomous University of Baja California, Tijuana 22390, BCN, Mexico.
phytase (AppA) is widely used as an exogenous enzyme in monogastric animal feed mainly because of its ability to degrade phytic acid or its salt (phytate), a natural source of phosphorus. Currently, successful recombinant production of soluble AppA has been achieved by gene overexpression using both bacterial and yeast systems. However, some methods for the biomembrane immobilization of phytases (including AppA), such as surface display on yeast cells and bacterial spores, have been investigated to avoid expensive enzyme purification processes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!