Prostate cancer (PrCa) is the most common male cancer in developed countries and the second most common cause of cancer death after lung cancer. We recently reported a genome-wide linkage scan in 69 Finnish hereditary PrCa (HPC) families, which replicated the HPC9 locus on 17q21-q22 and identified a locus on 2q37. The aim of this study was to identify and to detect other loci linked to HPC. Here we used ordered subset analysis (OSA), conditioned on nonparametric linkage to these loci to detect other loci linked to HPC in subsets of families, but not the overall sample. We analyzed the families based on their evidence for linkage to chromosome 2, chromosome 17 and a maximum score using the strongest evidence of linkage from either of the two loci. Significant linkage to a 5-cM linkage interval with a peak OSA nonparametric allele-sharing LOD score of 4.876 on Xq26.3-q27 (ΔLOD=3.193, empirical P=0.009) was observed in a subset of 41 families weakly linked to 2q37, overlapping the HPCX1 locus. Two peaks that were novel to the analysis combining linkage evidence from both primary loci were identified; 18q12.1-q12.2 (OSA LOD=2.541, ΔLOD=1.651, P=0.03) and 22q11.1-q11.21 (OSA LOD=2.395, ΔLOD=2.36, P=0.006), which is close to HPC6. Using OSA allows us to find additional loci linked to HPC in subsets of families, and underlines the complex genetic heterogeneity of HPC even in highly aggregated families.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3598326PMC
http://dx.doi.org/10.1038/ejhg.2012.185DOI Listing

Publication Analysis

Top Keywords

loci linked
12
linked hpc
12
genetic heterogeneity
8
finnish hereditary
8
prostate cancer
8
ordered subset
8
subset analysis
8
detect loci
8
linkage loci
8
hpc subsets
8

Similar Publications

Climate change is becoming a global challenge, threating agriculture's capacity to meet the food and nutritional requirements of the growing population. Underutilized crops present an opportunity to address climate change and nutritional deficiencies. Tef is a stress-resilient cereal crop, producing gluten-free grain of high nutritional quality.

View Article and Find Full Text PDF

Fusarium head blight (FHB), mainly caused by Fusarium graminearum and Fusarium culmorum, is a major wheat disease. Significant efforts have been made to improve resistance to FHB in bread wheat (Triticum aestivum), but more work is needed for durum wheat (Triticum turgidum spp. durum).

View Article and Find Full Text PDF

Leaf rust, caused by Puccinia triticina (Pt), is a serious constraint to wheat production. Developing resistant varieties is the best approach to managing this disease. Wheat leaf rust resistance (Lr) genes have been classified into either all-stage resistance (ASR) or adult-plant resistance (APR).

View Article and Find Full Text PDF

Inherited genetics represents an important contributor to risk of esophageal adenocarcinoma (EAC), and its precursor Barrett's esophagus (BE). Genome-wide association studies have identified ∼30 susceptibility variants for BE/EAC, yet genetic interactions remain unexamined. To address challenges in large-scale G×G scans, we combined knowledge-guided filtering and machine learning approaches, focusing on genes with (A) known/plausible links to BE/EAC pathogenesis (n=493) or (B) prior evidence of biological interactions (n=4,196).

View Article and Find Full Text PDF

Dementia refers to an umbrella phenotype of many different underlying pathologies with Alzheimer's disease (AD) being the most common type. Neuropathological examination remains the gold standard for accurate AD diagnosis, however, most that we know about AD genetics is based on Genome-Wide Association Studies (GWAS) of clinically defined AD. Such studies have identified multiple AD susceptibility variants with a significant portion of the heritability unexplained and highlighting the phenotypic and genetic heterogeneity of the clinically defined entity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!