Growth mechanism and controlled synthesis of AB-stacked bilayer graphene on Cu-Ni alloy foils.

ACS Nano

Department of Mechanical Engineering and the Materials Science and Engineering Program, The University of Texas at Austin, Austin, Texas 78712, United States.

Published: September 2012

Strongly coupled bilayer graphene (i.e., AB stacked) grows particularly well on commercial "90-10" Cu-Ni alloy foil. However, the mechanism of growth of bilayer graphene on Cu-Ni alloy foils had not been discovered. Carbon isotope labeling (sequential dosing of (12)CH(4) and (13)CH(4)) and Raman spectroscopic mapping were used to study the growth process. It was learned that the mechanism of graphene growth on Cu-Ni alloy is by precipitation at the surface from carbon dissolved in the bulk of the alloy foil that diffuses to the surface. The growth parameters were varied to investigate their effect on graphene coverage and isotopic composition. It was found that higher temperature, longer exposure time, higher rate of bulk diffusion for (12)C vs(13)C, and slower cooling rate all produced higher graphene coverage on this type of Cu-Ni alloy foil. The isotopic composition of the graphene layer(s) could also be modified by adjusting the cooling rate. In addition, large-area, AB-stacked bilayer graphene transferrable onto Si/SiO(2) substrates was controllably synthesized.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nn301689mDOI Listing

Publication Analysis

Top Keywords

cu-ni alloy
20
bilayer graphene
16
alloy foil
12
ab-stacked bilayer
8
graphene
8
graphene cu-ni
8
alloy foils
8
graphene coverage
8
isotopic composition
8
cooling rate
8

Similar Publications

Cu-Ni Oxidation Mechanism Unveiled: A Machine Learning-Accelerated First-Principles and TEM Study.

Nano Lett

January 2025

Department of Mechanical Engineering & Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States.

The development of accurate methods for determining how alloy surfaces spontaneously restructure under reactive and corrosive environments is a key, long-standing, grand challenge in materials science. Using machine learning-accelerated density functional theory and rare-event methods, in conjunction with environmental transmission electron microscopy (ETEM), we examine the interplay between surface reconstructions and preferential segregation tendencies of CuNi(100) surfaces under oxidation conditions. Our modeling approach predicts that oxygen-induced Ni segregation in CuNi alloys favors Cu(100)-O c(2 × 2) reconstruction and destabilizes the Cu(100)-O (2√2 × √2)45° missing row reconstruction (MRR).

View Article and Find Full Text PDF

Trichloroethylene (TCE) is widely used in various industrial applications, leading to significant environmental and public health concerns due to its toxicity and persistence. Current nonthermal liquid-phase TCE treatment methods, including electrochemical processes, typically produce liquid byproducts that require additional separation steps, limiting their efficiency. To overcome these challenges, this study introduces an innovative electrochemical approach for the direct conversion of TCE gas into less harmful gaseous products, utilizing a Cu/Ni alloy 3D foam electrode integrated with a poly(vinyl alcohol) (PVA)-sodium polyphosphate (SPP) gel membrane system.

View Article and Find Full Text PDF

Precise Regulation of In Situ Exsolution Components of Nanoparticles for Constructing Active Interfaces toward Carbon Dioxide Reduction.

ACS Nano

January 2025

Key Laboratory of Hydraulic Machinery Transients, Ministry of Education, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China.

Metal nanocatalysts supported on oxide scaffolds have been widely used in energy storage and conversion reactions. So far, the main research is still focused on the growth, density, size, and activity enhancement of exsolved nanoparticles (NPs). However, the lack of precise regulation of the type and composition of NPs elements under reduction conditions has restricted the architectural development of in situ exsolution systems.

View Article and Find Full Text PDF

Sulfate reducing bacteria corrosion of a 90/10 Cu-Ni alloy coupled to an Al sacrificial anode.

Bioelectrochemistry

December 2024

Marine Corrosion and Protection Team, School of Chemical Engineering and Technology (Zhuhai 519082), Sun Yat-sen University, China. Electronic address:

This study investigates the corrosion of 90/10 copper-nickel (Cu-Ni) alloy caused by sulfate-reducing bacteria (SRB) in the presence of aluminum anodes, with particular emphasis on the role of electron supply in microbial corrosion and the resulting local corrosion failures. The study reveals that the electron supply from the anode supports SRB growth on the Cu-Ni alloy through an "Electrons-siphoning" mechanism. However, the supply is insufficient to sustain the SRB population, resulting in ineffective cathodic protection (i = 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!