In vitro optimization of EtNBS-PDT against hypoxic tumor environments with a tiered, high-content, 3D model optical screening platform.

Mol Pharm

Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, 40 Blossom Street, Boston, Massachusetts 02215, United States.

Published: November 2012

Hypoxia and acidosis are widely recognized as major contributors to the development of treatment resistant cancer. For patients with disseminated metastatic lesions, such as most women with ovarian cancer (OvCa), the progression to treatment resistant disease is almost always fatal. Numerous therapeutic approaches have been developed to eliminate treatment resistant carcinoma, including novel biologic, chemo, radiation, and photodynamic therapy (PDT) regimens. Recently, PDT using the cationic photosensitizer EtNBS was found to be highly effective against therapeutically unresponsive hypoxic and acidic OvCa cellular populations in vitro. To optimize this treatment regimen, we developed a tiered, high-content, image-based screening approach utilizing a biologically relevant OvCa 3D culture model to investigate a small library of side-chain modified EtNBS derivatives. The uptake, localization, and photocytotoxicity of these compounds on both the cellular and nodular levels were observed to be largely mediated by their respective ethyl side chain chemical alterations. In particular, EtNBS and its hydroxyl-terminated derivative (EtNBS-OH) were found to have similar pharmacological parameters, such as their nodular localization patterns and uptake kinetics. Interestingly, these two molecules were found to induce dramatically different therapeutic outcomes: EtNBS was found to be more effective in killing the hypoxic, nodule core cells with superior selectivity, while EtNBS-OH was observed to trigger widespread structural degradation of nodules. This breakdown of the tumor architecture can improve the therapeutic outcome and is known to synergistically enhance the antitumor effects of front-line chemotherapeutic regimens. These results, which would not have been predicted or observed using traditional monolayer or in vivo animal screening techniques, demonstrate the powerful capabilities of 3D in vitro screening approaches for the selection and optimization of therapeutic agents for the targeted destruction of specific cellular subpopulations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3538815PMC
http://dx.doi.org/10.1021/mp300262xDOI Listing

Publication Analysis

Top Keywords

treatment resistant
12
tiered high-content
8
vitro optimization
4
optimization etnbs-pdt
4
etnbs-pdt hypoxic
4
hypoxic tumor
4
tumor environments
4
environments tiered
4
high-content model
4
model optical
4

Similar Publications

Background: Patients with estrogen receptor (ER)-positive breast cancer (BC) can be treated with endocrine therapy targeting ER, however, metastatic recurrence occurs in 25% of the patients who have initially been treated. Secreted proteins from tumors play important roles in cancer metastasis but previous methods for isolating secretory proteins had limitations in identifying novel targets.

Methods: We applied an in situ secretory protein labeling technique using TurboID to analyze secretome from tamoxifen-resistant (TAMR) BC.

View Article and Find Full Text PDF

Background: The most common malignant type of kidney cancer is clear cell renal cell carcinoma (ccRCC). The expression levels of hyaluronan-mediated motility receptor (HMMR) in many tumor types are significantly elevated. HMMR is closely associated with tumor-related progression, treatment resistance, and poor prognosis, and has yet to be fully investigated in terms of its expression patterns and molecular mechanisms of action in ccRCC.

View Article and Find Full Text PDF

Nasopharyngeal carcinoma (NPC) is a prevalent malignancy in China, commonly associated with undifferentiated cell types and Epstein-Barr virus (EBV) infection. The presence of intense lymphocytic infiltration and elevated expression of programmed cell death ligand 1(PD-L1) in NPC highlights its potential for immunotherapy, yet current treatment outcomes remain suboptimal. In this review, we explore the tumor microenvironment of NPC to better understand the mechanisms of resistance to immunotherapy, evaluate current therapeutic strategies, and pinpoint emerging targets, such as tertiary lymphoid structures (TLSs), that could enhance treatment outcomes and prognostic accuracy.

View Article and Find Full Text PDF

Background: Pancreatic cancer is characterized by a complex tumor microenvironment that hinders effective immunotherapy. Identifying key factors that regulate the immunosuppressive landscape is crucial for improving treatment strategies.

Methods: We constructed a prognostic and risk assessment model for pancreatic cancer using 101 machine learning algorithms, identifying OSBPL3 as a key gene associated with disease progression and prognosis.

View Article and Find Full Text PDF

Background: Up to 23% of breast cancer patients recurred within a decade after trastuzumab treatment. Conversely, one trial found that patients with low HER2 expression and metastatic breast cancer had a positive response to trastuzumab-deruxtecan (T-Dxd). This indicates that relying solely on HER2 as a single diagnostic marker to predict the efficacy of anti-HER2 drugs is insufficient.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!